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1. Outils probabilistes pour le statisticien

Cette premiére feuille d’exercices est particuliérement longue. Il n’est pas attendu de tout
traiter.

Exercice 1.1 (Maximum de variables exponentielles i.i.d.). Soient (X,,)p>1 sont i.i.d. et dis-
tribuées exponentiellement avec paramétre A > 0, c’est-a-dire de densité z — \e 1,5 par
rapport a la mesure de Lebesgue sur R. Pour tout n > 1, on définit

M, = max(X1,...,X,).

Equivalent presque str de M,, (optionnel).

1. A laide du Lemme de Borel-Cantelli, montrer que lim inf Mo > 1/\ ps.

logn
2. A T’aide du Lemme de Borel-Cantelli, montrer que lim sup lc));”n =1/Aps.
3. Montrer finalement que liw” 22 1/A. On pourra faire une preuve "a la Cesaro”.
g n—oo

Développement limité de M,, puis de 1/M,,.

1 . . ) ..
4. Montrer que M, — Oi” converge en loi vers une loi notée GG que vous caractériserez.

On passera par la fonction de répartition.

5. En appliquant la méthode Delta et la question précédente, montrer que

logn (d)
1 - H
ogn X <M > — Hj,

n n—oo

et préciser la fonction de répartition de Hy.

Application: intervalle de confiance pour ).

6. Pour 8 €]0, 1], calculer explicitement le quantile d’ordre 3 de la loi de Hy, noté hy g.

7. Montrer avec tout ce qui précéde que pour tout « €]0, 1[, en notant

logn logn
L(X1,..., Xp;a) = A M
ey og(—log(a/2)) ’ log(—log(1—a/2)) |’
L+ log na 1+ logn =
on a
P(Il(Xl,...,Xn;OJ) =] )\) — 1—a.
n—oo
I(X1,...,X,) est un intervalle aléatoire appelé intervalle de confiance asymptotique

pour A de probabilité de couverture 1 — a.
8. Quel est I’équivalent presque sir de diam(/;(X1,..., X, @))?

9. (x car moins guidé) Pourrait-on trouver un autre intervalle de confiance dont le diamétre
décroit sensiblement plus vite en n que l'intervalle précédent 7

Exercice 1.2 (Empirical risk minimisation). On observe (X1, Y1),...,(Xp,Y,) 1.id., de loi
inconnue, avec X; vecteurs aléatoires de R? (features), et Y; € {0,1} (labels). On appelle
classifieur une fonction mesurable h : R? — {0,1}. Soit H un ensemble fini de classifieurs.
On consideére le classification loss £ défini par

LX), Y) = Linx)2yy -



Pour h € H, on définit son risque R(h) et son risque empirique ﬁn(h), donnés par :

Le but du statisticien est de trouver le meilleur classifieur A € H au sens du risque R:

h* in R(h) .
Gargzrélﬁ (h)

Probléme : R dépend de la loi des données qui est inconnue : on ne peut pas calculer R(h).
La seule chose & laquelle nous avons accés, ce sont les données. On définit I'estimateur ERM
hy, (empirical risk minimizer) par :

hy € in Ry, (h).
n € argmin Ky (h)
Notons qu’on a par définition R(h*) < R(ﬂn) Le but de I’exercice est d’établir une inégalité

dans autre sens (avec des termes en plus) afin de montrer que iln n’est pas trop mauvais
par rapport & h* au sens du risque R.

1. A l’aide de I'inégalité de Hoeffding, montrer que pour tout h € H et tout € > 0,

P(‘ﬁn(h) - R(h)( > g> < e~
2. En utilisant une union bound, montrer que pour tout € > 0,

P(sup Ry (h) — R(h)( > 5> < 2[H| e 2,
heH
En déduire qu’avec probabilité au moins 1 — ¢,

- 1 2
sup | Bu(h) — R(h)‘ < /= log <|H’> .
heH n

3. Montrer enfin qu’avec probabilité au moins 1 — 6,

A N 1 2|H|
< — — .
R(hy,) < R(h*) +2 o log ( 5 >

Interpréter.
Exercice 1.3 (Loi et espérance conditionnelle). Soit X ~ Exp(1), et Y une variable aléatoire
dont la densité conditionnelle par rapport a la mesure de comptage sur N est donnée par :
xYe™ "
y!

pY\X(y‘x):

1. Trouver la densité jointe de (X,Y) et identifier la mesure dominante.
2. Quelle est la densité marginale de Y ? En déduire E[Y].

3. Reconnaissez-vous la loi de Y conditionnellement a X 7 Vérifier que la loi de ’espérance
totale donne la méme valeur pour E[Y].

4. Trouver la densité conditionnelle de X sachant Y = y.



Exercice 1.4 (Fonction caractéristique des variables gaussiennes). Nous voulons montrer que
si X ~ N (u,0?), alors pour tout t € R,

2
Dx(t) := E[e"™X] = exp (iut — 02t2> .

0. Montrer le résultat lorsque X est dégénérée (o = 0). Nous supposons désormais o > 0.

1. Montrer que pour tout t € R, ®x(t) = e f,(t), ot

1 , 2
() = — ioty—y /2d )
oty = o= [ ¢ y

2. Montrer que pour tout ¢ € R, fs(t) € R, que f, est différentiable et trouver une
équation différentielle qu’elle satisfait.

3. Conclure.
4. En déduire que si X ~ N (u,0?), et a,b € R, alors aX + b~ N (au + b, a’0?).

5. En déduire que, si X1 ~ N (u1,0?), Xo ~ N(u2,03) et X1 et Xy sont indépendantes,
alors
X1+ Xo ~ N(p1 + p2, 05 4 03) .

Exercice 1.5 (Méthode Delta pour une loi multinomiale). Soit
(An, Bn, Cp) ~ Multinomial(n; p1,p2, 1 — p1 — p2)
avec p1,p2 € (0,1) et p; + pa < 1. Pour tout n > 1, on définit

U, = ﬂ, V, = &, L = log<Un) .
n Vi

1. Montrer que
\/ﬁ((Unu VTL) - (plvp?)) n%))o N(O,Z),

5 <p1(1 —p1) P2 > ‘

ou
—pip2 p2(l —p2)

2. En appliquant la méthode Delta a la fonction

g(x,y) = log(x) —log(y),

1
N <Zn _ log<p1)> (), N(o, 1. —).
P2 n—00 b1 P2

Interpréter la symétrie dans la variance limite en py, pa.

montrer que

Exercice 1.6 (Plus rapide que 1/y/n ?). Supposons que Xi,..., X, sont i.i.d., centrées, de
variance finie 02 > 0 inconnue. On note classiquement X,, la moyenne empirique des X; et

1 & 1 & ’
52 == X3—<§ Xi> :
n n
i=1 =1

1. Etudier la convergence presque siire de X, et de 62.



2. Montrer que

Dans toute la suite, on suppose que 02 = 1 et qu’il est connu.

3. Quelle est la limite en loi de y/n(cos(X,) — 1) ?

4. Trouver une suite (ay),>1 telle que a,(cos(X,)—1) converge en loi vers une v.a. Z qui
n’est pas presque siirement constante. Caractériser la loi de Z.

Exercice 1.7 (Une inégalité de type Bennett). On note h la fonction définie sur Ry par
h(z) = (14 z)log(l+ x) — x, et ¢ définie sur R par ¢(z) = exp(x) —x — 1. Soit X ~ Poi(h)
avec 0 > 0.

1. Pour tout A € R, calculer E[exp(A(X — 6))] en fonction de ¢.

2. Montrer que pour tout z > 0,

P(X — 0 > x) < exp(—0h(z/0)).

3. On donne e=2M%) ~ 0.003. Comment cette inégalité se compare-t-elle & Bienaymé-Tchebychev
pour P(X > 10) lorsque §# =2 7

Exercice 1.8 (Canaux gaussiens). Supposons que Y ~ N (t,72) et que, conditionnellement &
Y =y, Xi1,..., X, soient i.i.d. de loi N(y,o?). Montrer que

2 /2
Y|(X1,...,Xn)NN<t/T +nX,/o 1 )

1/m2+n/o? "1/72 4+ n/o?

Pour une variable gaussienne, on appelle précision I'inverse de sa variance. Quelle propriété
de la précision a-t-on mise en évidence ici 7

Exercice 1.9 (Loi béta). Supposons que X et Y soient des v.a. positives et indépendantes.

1. Montrer que pour tout 0 < x < 1,

P(XfY S‘”) - {FX <1x—Ym>] |

2. Supposons que E[Y] < oo et que X admette une densité px par rapport & u. Montrer
que V = X/(X +Y) admet aussi une densité py par rapport a u, donnée par

pv(z) =E [(1 E/ac)sz (f_yxﬂ |

Pour «, 8 > 0, la loi Gamma I'(«, 3) est la loi de densité

1 o, .a—1_—fBx
:L’b—)P(a)B % e

par rapport & Lebg , et la loi béta Beta(c, ) est la loi de densité

T F(a + ﬁ) l‘a_l(l _ 93)6_1

L(a)l(B)
par rapport a Lebg ).



3. Montrer quesi X ~ I'(a, 1) et Y ~ I'(¢/, 1) sont indépendantes, alors Xfy ~ Beta(a, o).

Exercice 1.10 (Absence de géométrie dans les graphes d’Erdgs-Rényi ). Pour n > 1 on note
[n] ={1,2,...,n}. Soit G ~ G(n,p) un graphe aléatoire Erdgs-Rényi d’ensemble de sommets
[n], ou chaque aréte e = {u,v} € ([g}) est présente dans G indépendamment avec probabilité
p € [0,1]. On note e(G) le nombre d’arétes de G.

1. Existe-t-il une valeur de p telle que G ~ G(n, p) soit uniforme sur I’ensemble des graphes
d’ensemble de sommets [n] 7

2. Pour G ~ G(n,p), quelle est la loi de e(G) ?
3. Pour G ~ G(n,p), quelle est la loi conditionnelle de G sachant e(G) 7

4. Expliquer le titre de I'exercice.
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