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1. Outils probabilistes pour le statisticien

Cette première feuille d’exercices est particulièrement longue. Il n’est pas attendu de tout
traiter.

Exercice 1.1 (Maximum de variables exponentielles i.i.d.). Soient (Xn)n≥1 sont i.i.d. et dis-
tribuées exponentiellement avec paramètre λ > 0, c’est-à-dire de densité x 7→ λe−λx1x>0 par
rapport à la mesure de Lebesgue sur R. Pour tout n ≥ 1, on définit

Mn := max(X1, . . . , Xn) .

Equivalent presque sûr de Mn (optionnel).

1. À l’aide du Lemme de Borel-Cantelli, montrer que lim inf Mn
logn ≥ 1/λ, p.s.

2. À l’aide du Lemme de Borel-Cantelli, montrer que lim sup Xn
logn = 1/λ p.s.

3. Montrer finalement que Mn
logn

p.s.−→
n→∞

1/λ. On pourra faire une preuve "à la Cesaro".

Développement limité de Mn puis de 1/Mn.

4. Montrer que Mn − logn
λ converge en loi vers une loi notée Gλ que vous caractériserez.

On passera par la fonction de répartition.

5. En appliquant la méthode Delta et la question précédente, montrer que

log n×
(
log n

Mn
− λ

)
(d)−→

n→∞
Hλ,

et préciser la fonction de répartition de Hλ.

Application: intervalle de confiance pour λ.

6. Pour β ∈]0, 1[, calculer explicitement le quantile d’ordre β de la loi de Hλ, noté hλ,β .

7. Montrer avec tout ce qui précède que pour tout α ∈]0, 1[, en notant

I1(X1, . . . , Xn;α) :=

 logn
Mn

1 + log(− log(α/2))
logn

,

logn
Mn

1 + log(− log(1−α/2))
logn

 ,

on a
P (I1(X1, . . . , Xn;α) ∋ λ) −→

n→∞
1− α .

I1(X1, . . . , Xn) est un intervalle aléatoire appelé intervalle de confiance asymptotique
pour λ de probabilité de couverture 1− α.

8. Quel est l’équivalent presque sûr de diam(I1(X1, . . . , Xn;α))?

9. (⋆ car moins guidé) Pourrait-on trouver un autre intervalle de confiance dont le diamètre
décroit sensiblement plus vite en n que l’intervalle précédent ?

Exercice 1.2 (Empirical risk minimisation). On observe (X1, Y1), . . . , (Xn, Yn) i.i.d., de loi
inconnue, avec Xi vecteurs aléatoires de Rd (features), et Yi ∈ {0, 1} (labels). On appelle
classifieur une fonction mesurable h : Rd → {0, 1}. Soit H un ensemble fini de classifieurs.
On considère le classification loss ℓ défini par

ℓ(h(X), Y ) = 1{h(X)̸=Y } .
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Pour h ∈ H, on définit son risque R(h) et son risque empirique R̂n(h), donnés par :

R(h) = E[ℓ(h(X), Y )], R̂n(h) =
1

n

n∑
i=1

ℓ(h(Xi), Yi) .

Le but du statisticien est de trouver le meilleur classifieur h ∈ H au sens du risque R:

h⋆ ∈ argmin
h∈H

R(h) .

Problème : R dépend de la loi des données qui est inconnue : on ne peut pas calculer R(h).
La seule chose à laquelle nous avons accès, ce sont les données. On définit l’estimateur ERM
ĥn (empirical risk minimizer) par :

ĥn ∈ argmin
h∈H

R̂n(h) .

Notons qu’on a par définition R(h⋆) ≤ R(ĥn). Le but de l’exercice est d’établir une inégalité
dans l’autre sens (avec des termes en plus) afin de montrer que ĥn n’est pas trop mauvais
par rapport à h⋆ au sens du risque R.

1. A l’aide de l’inégalité de Hoeffding, montrer que pour tout h ∈ H et tout ε > 0,

P
(∣∣∣R̂n(h)−R(h)

∣∣∣ ≥ ε
)
≤ 2e−2nε2 .

2. En utilisant une union bound, montrer que pour tout ε > 0,

P
(
sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ ≥ ε

)
≤ 2|H| e−2nε2 .

En déduire qu’avec probabilité au moins 1− δ,

sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ ≤√ 1

2n
log

(
2|H|
δ

)
.

3. Montrer enfin qu’avec probabilité au moins 1− δ,

R(ĥn) ≤ R(h⋆) + 2

√
1

2n
log

(
2|H|
δ

)
.

Interpréter.

Exercice 1.3 (Loi et espérance conditionnelle). Soit X ∼ Exp(1), et Y une variable aléatoire
dont la densité conditionnelle par rapport à la mesure de comptage sur N est donnée par :

pY |X(y |x) = xye−x

y!
.

1. Trouver la densité jointe de (X,Y ) et identifier la mesure dominante.

2. Quelle est la densité marginale de Y ? En déduire E[Y ].

3. Reconnaissez-vous la loi de Y conditionnellement à X ? Vérifier que la loi de l’espérance
totale donne la même valeur pour E[Y ].

4. Trouver la densité conditionnelle de X sachant Y = y.
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Exercice 1.4 (Fonction caractéristique des variables gaussiennes). Nous voulons montrer que
si X ∼ N (µ, σ2), alors pour tout t ∈ R,

ΦX(t) := E[eitX ] = exp

(
iµt− σ2

2
t2
)

.

0. Montrer le résultat lorsque X est dégénérée (σ = 0). Nous supposons désormais σ > 0.

1. Montrer que pour tout t ∈ R, ΦX(t) = eitµfσ(t), où

fσ(t) :=
1√
2π

∫
R
eiσty−y2/2dy .

2. Montrer que pour tout t ∈ R, fσ(t) ∈ R, que fσ est différentiable et trouver une
équation différentielle qu’elle satisfait.

3. Conclure.

4. En déduire que si X ∼ N (µ, σ2), et a, b ∈ R, alors aX + b ∼ N (aµ+ b, a2σ2).

5. En déduire que, si X1 ∼ N (µ1, σ
2
1), X2 ∼ N (µ2, σ

2
2) et X1 et X2 sont indépendantes,

alors
X1 +X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2) .

Exercice 1.5 (Méthode Delta pour une loi multinomiale). Soit

(An, Bn, Cn) ∼ Multinomial(n; p1, p2, 1− p1 − p2)

avec p1, p2 ∈ (0, 1) et p1 + p2 < 1. Pour tout n ≥ 1, on définit

Un :=
An

n
, Vn :=

Bn

n
, Zn := log

(
Un

Vn

)
.

1. Montrer que
√
n
(
(Un, Vn)− (p1, p2)

) (d)−→
n→∞

N
(
0,Σ

)
,

où
Σ =

(
p1(1− p1) −p1p2
−p1p2 p2(1− p2)

)
.

2. En appliquant la méthode Delta à la fonction

g(x, y) = log(x)− log(y),

montrer que
√
n

(
Zn − log

(
p1
p2

))
(d)−→

n→∞
N
(
0,

1

p1
+

1

p2

)
.

Interpréter la symétrie dans la variance limite en p1, p2.

Exercice 1.6 (Plus rapide que 1/
√
n ?). Supposons que X1, . . . , Xn sont i.i.d., centrées, de

variance finie σ2 > 0 inconnue. On note classiquement X̄n la moyenne empirique des Xi et

σ̂2 :=
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

.

1. Étudier la convergence presque sûre de X̄n et de σ̂2.
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2. Montrer que √
nX̄n√
σ̂2

(d)−→
n→∞

N (0, 1) .

Dans toute la suite, on suppose que σ2 = 1 et qu’il est connu.

3. Quelle est la limite en loi de
√
n(cos(X̄n)− 1) ?

4. Trouver une suite (an)n≥1 telle que an(cos(X̄n)− 1) converge en loi vers une v.a. Z qui
n’est pas presque sûrement constante. Caractériser la loi de Z.

Exercice 1.7 (Une inégalité de type Bennett). On note h la fonction définie sur R+ par
h(x) = (1 + x) log(1 + x)− x, et ϕ définie sur R par ϕ(x) = exp(x)− x− 1. Soit X ∼ Poi(θ)
avec θ > 0.

1. Pour tout λ ∈ R, calculer E[exp(λ(X − θ))] en fonction de ϕ.

2. Montrer que pour tout x > 0,

P(X − θ ≥ x) ≤ exp(−θh(x/θ)) .

3. On donne e−2h(4) ∼ 0.003. Comment cette inégalité se compare-t-elle à Bienaymé–Tchebychev
pour P(X ≥ 10) lorsque θ = 2 ?

Exercice 1.8 (Canaux gaussiens). Supposons que Y ∼ N (t, τ2) et que, conditionnellement à
Y = y, X1, . . . , Xn soient i.i.d. de loi N (y, σ2). Montrer que

Y | (X1, . . . , Xn) ∼ N
(
t/τ2 + nX̄n/σ

2

1/τ2 + n/σ2
,

1

1/τ2 + n/σ2

)
.

Pour une variable gaussienne, on appelle précision l’inverse de sa variance. Quelle propriété
de la précision a-t-on mise en évidence ici ?

Exercice 1.9 (Loi bêta). Supposons que X et Y soient des v.a. positives et indépendantes.

1. Montrer que pour tout 0 < x < 1,

P
(

X

X + Y
≤ x

)
= E

[
FX

(
xY

1− x

)]
.

2. Supposons que E[Y ] < ∞ et que X admette une densité pX par rapport à µ. Montrer
que V = X/(X + Y ) admet aussi une densité pV par rapport à µ, donnée par

pV (x) = E
[

Y

(1− x)2
pX

(
xY

1− x

)]
.

Pour α, β > 0, la loi Gamma Γ(α, β) est la loi de densité

x 7→ 1

Γ(α)
βαxα−1e−βx

par rapport à LebR+ , et la loi bêta Beta(α, β) est la loi de densité

x 7→ Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

par rapport à Leb[0,1].
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3. Montrer que si X ∼ Γ(α, 1) et Y ∼ Γ(α′, 1) sont indépendantes, alors X
X+Y ∼ Beta(α, α′).

Exercice 1.10 (Absence de géométrie dans les graphes d’Erdős-Rényi ). Pour n ≥ 1 on note
[n] = {1, 2, . . . , n}. Soit G ∼ G(n, p) un graphe aléatoire Erdős-Rényi d’ensemble de sommets
[n], où chaque arête e = {u, v} ∈

(
[n]
2

)
est présente dans G indépendamment avec probabilité

p ∈ [0, 1]. On note e(G) le nombre d’arêtes de G.

1. Existe-t-il une valeur de p telle que G ∼ G(n, p) soit uniforme sur l’ensemble des graphes
d’ensemble de sommets [n] ?

2. Pour G ∼ G(n, p), quelle est la loi de e(G) ?

3. Pour G ∼ G(n, p), quelle est la loi conditionnelle de G sachant e(G) ?

4. Expliquer le titre de l’exercice.
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