THE GRAPH ALIGNMENT PROBLEM: A LOCAL POINT OF VIEW

Luca Ganassali INRIA, DI/ENS, PSL Research University joint work with Laurent Massoulié and Marc Lelarge

Colloque Jeunes Probabilistes et Statisticiens - Saint Pierre d'Oléron - Oct. 2021

<u>Question</u> : What is the 'best way' to match the nodes of two graphs \mathcal{G}, \mathcal{H} ?

<u>Question</u> : What is the 'best way' to match the nodes of two graphs \mathcal{G}, \mathcal{H} ?

Mathematically :

if $|V(\mathcal{G})| = |V(\mathcal{H})|$, find a bijection $f : V(\mathcal{G}) \rightarrow V(\mathcal{H})$ minimizing :

 $\sum_{i,j \in V(\mathcal{G})} \left(\mathbf{1}_{(i,j) \in E(\mathcal{G})} - \mathbf{1}_{(f(i),f(j)) \in E(\mathcal{H})} \right)^2 =: \sharp edge \ disagreements$

<u>Question</u> : What is the 'best way' to match the nodes of two graphs \mathcal{G}, \mathcal{H} ?

 $\frac{\text{Mathematically}:}{\text{Equivalently, if } V(\mathcal{G}) = V(\mathcal{H}) = [n], \text{ solve}$

 $\underset{\boldsymbol{\Pi}\in\mathcal{S}_{n}}{\arg\max}\operatorname{Tr}\left(\boldsymbol{A}_{\mathcal{G}}\boldsymbol{\Pi}\boldsymbol{A}_{\mathcal{H}}\boldsymbol{\Pi}^{T}\right)$

<u>Question</u> : What is the 'best way' to match the nodes of two graphs \mathcal{G}, \mathcal{H} ?

<u>Mathematically</u>: Equivalently, if $V(\mathcal{G}) = V(\mathcal{H}) = [n]$, solve

Planted graph alignment

Correlated Erdős-Rényi model

Correlated Erdős-Rényi model

1. Two graphs \mathcal{G} (blue) and \mathcal{G}' (red) with same node set [n], with edges sampled independently as follows :

- with probability $\lambda s/n$ to get two-colored edges;
- with probability λ(1 s)/n to get a blue monochromatic (resp. red monochromatic) edge;
- with remaining probability to get a non-edge,

Correlated Erdős-Rényi model

1. Two graphs \mathcal{G} (blue) and \mathcal{G}' (red) with same node set [n], with edges sampled independently as follows :

- with probability $\lambda s/n$ to get two-colored edges;
- with probability λ(1 s)/n to get a blue monochromatic (resp. red monochromatic) edge;
- with remaining probability to get a non-edge,
- **2.** Relabel the vertices of the red graph \mathcal{G}' with an uniform independent permutation $\pi^* \in S_n$. We observe \mathcal{G} and $\mathcal{H} := \mathcal{G}' \circ \pi^*$.

Correlated Erdős-Rényi model

1. Two graphs \mathcal{G} (blue) and \mathcal{G}' (red) with same node set [n], with edges sampled independently as follows :

- with probability $\lambda s/n$ to get two-colored edges;
- with probability λ(1 s)/n to get a blue monochromatic (resp. red monochromatic) edge;
- with remaining probability to get a non-edge,

2. Relabel the vertices of the red graph \mathcal{G}' with an uniform independent permutation $\pi^* \in S_n$. We observe \mathcal{G} and $\mathcal{H} := \mathcal{G}' \circ \pi^*$.

(The marginals \mathcal{G} , \mathcal{H} are Erdős-Rényi random graphs with average degree λ).

Planted graph alignment : Correlated Erdős-Rényi model

1.

 \mathcal{G},\mathcal{G}'

Planted graph alignment : Correlated Erdős-Rényi model

1.

 $\mathcal{G}, \mathcal{G}'$

G, H, with $\pi^* = (6)(153119284710)$

<u>Remarks</u> :

• The MAP estimator of π^* is $\arg \max_{\Pi} \langle \mathsf{A}_{\mathcal{G}}, \Pi \mathsf{A}_{\mathcal{H}} \Pi^T \rangle_{\dots}$

<u>Remarks</u> :

- The MAP estimator of π^* is $\arg \max_{\Pi} \langle \mathsf{A}_{\mathcal{G}}, \Pi \mathsf{A}_{\mathcal{H}} \Pi^T \rangle_{\dots}$
- We can only hope for *partial recovery*

<u>Remarks</u> :

- The MAP estimator of π^* is $\arg \max_{\Pi} \langle \mathsf{A}_{\mathcal{G}}, \Pi \mathsf{A}_{\mathcal{H}} \Pi^T \rangle_{\dots}$
- We can only hope for partial recovery (isolated nodes)...

For any subset $\mathcal{C} \subset [n]$, the performance of any one-to-one estimator $\hat{\pi}: \mathcal{C} \rightarrow [n]$

$$\operatorname{ov}(\pi^*, \hat{\pi}) := \frac{1}{n} \sum_{i \in \mathcal{C}} \mathbf{1}_{\hat{\pi}(i) = \pi^*(i)}.$$

Note that the estimator $\hat{\pi}$ only consists in a partial matching. The *error* fraction of $\hat{\pi}$ with the unknown permutation π^* is defined as

$$\operatorname{err}(\pi^*, \hat{\pi}) := \frac{1}{n} \sum_{i \in \mathcal{C}} \mathbf{1}_{\hat{\pi}(i) \neq \pi^*(i)} = \frac{|\mathcal{C}|}{n} - \operatorname{ov}(\pi^*, \hat{\pi}).$$

For any subset $\mathcal{C} \subset [n]$, the performance of any one-to-one estimator $\hat{\pi}: \mathcal{C} \rightarrow [n]$

$$\operatorname{ov}(\pi^*, \hat{\pi}) := \frac{1}{n} \sum_{i \in \mathcal{C}} \mathbf{1}_{\hat{\pi}(i) = \pi^*(i)}.$$

Note that the estimator $\hat{\pi}$ only consists in a partial matching. The *error* fraction of $\hat{\pi}$ with the unknown permutation π^* is defined as

$$\operatorname{err}(\pi^*, \hat{\pi}) := \frac{1}{n} \sum_{i \in \mathcal{C}} \mathbf{1}_{\hat{\pi}(i) \neq \pi^*(i)} = \frac{|\mathcal{C}|}{n} - \operatorname{ov}(\pi^*, \hat{\pi}).$$

A sequence of injective estimators $\{\hat{\pi}_n\}_n$ is said to achieve

- Partial recovery if there exists some $\alpha > \mathbf{0}$ such that $\mathbb{P}(\operatorname{ov}(\pi^*, \hat{\sigma}) > \alpha) \xrightarrow[n \to \infty]{} \mathbf{1},$
- One-sided partial recovery if it achieves partial recovery and $\mathbb{P}(\operatorname{err}(\pi^*, \hat{\sigma}) = o(1)) \xrightarrow[n \to \infty]{} 1.$

A local approach

For $i \in V(\mathcal{G}), u \in V(\mathcal{H})$, look at the neighborhoods \mathcal{N}_i and \mathcal{N}_u at depth d :

- if u = π^{*}(i), (N_i, N_u) ≃ GW trees of offspring Poi(λ), with intersection of offspring Poi(λs) (model P_{1,d});
- if u ≠ π*(i), (N_i, N_u) ≃ independent GW trees of offspring Poi(λ) (model P_{o,d}).

For $i \in V(\mathcal{G}), u \in V(\mathcal{H})$, look at the neighborhoods \mathcal{N}_i and \mathcal{N}_u at depth d :

- if $u = \pi^*(i)$, $(\mathcal{N}_i, \mathcal{N}_u) \simeq \text{GW}$ trees of offspring $\text{Poi}(\lambda)$, with intersection of offspring $\text{Poi}(\lambda s)$ (model $\mathbb{P}_{1,d}$);
- if u ≠ π*(i), (N_i, N_u) ≃ independent GW trees of offspring Poi(λ) (model P_{o,d}).

Hypothesis testing : Can we test $\mathbb{P}_{1,d}$ versus $\mathbb{P}_{0,d}$?

For $i \in V(\mathcal{G}), u \in V(\mathcal{H})$, look at the neighborhoods \mathcal{N}_i and \mathcal{N}_u at depth d :

- if $u = \pi^*(i)$, $(\mathcal{N}_i, \mathcal{N}_u) \simeq \text{GW}$ trees of offspring $\text{Poi}(\lambda)$, with intersection of offspring $\text{Poi}(\lambda s)$ (model $\mathbb{P}_{1,d}$);
- if u ≠ π*(i), (N_i, N_u) ≃ independent GW trees of offspring Poi(λ) (model P_{o,d}).

Hypothesis testing : Can we test $\mathbb{P}_{1,d}$ versus $\mathbb{P}_{o,d}$? \rightarrow likelihood ratio

$$L_d(t,t') := \frac{\mathbb{P}_{1,d}(t,t')}{\mathbb{P}_{0,d}(t,t')}.$$

For two trees of depth d, the likelihood ratio $L_d(t,t') := \frac{\mathbb{P}_{1,d}(t,t')}{\mathbb{P}_{o,d}(t,t')}$ verifies

$$L_d(t,t') = \sum_{k=0}^{c \wedge c'} \psi(k,c,c') \sum_{\substack{\sigma \in \mathcal{S}(k,c) \\ \sigma' \in \mathcal{S}(k,c')}} \prod_{i=1}^k L_{d-1}(t_{\sigma(i)},t'_{\sigma'(i)}),$$

where c and c' are the number of children of the roots, $\psi(k, c, c') = e^{\lambda s} \times \frac{s^{k_{\overline{s}}c+c'-2k}}{\lambda^{k_{k!}}}$, and $\mathcal{S}(k, \ell)$ denotes the set of injective mappings from [k] to $[\ell]$.

Results

<u>One-sided tests</u>: tests $\mathcal{T}_d : \mathcal{X}_d \times \mathcal{X}_d \to \{0, 1\}$ such that $\mathbb{P}_{o,d}(\mathcal{T}_d = 0) = 1 - o(1)$ and $\liminf_d \mathbb{P}_{1,d}(\mathcal{T}_d = 1) > 0$ (i.e. vanishing type I error and non vanishing power).

Theorem

Let

$$\mathrm{KL}_d := \mathrm{KL}(\mathbb{P}_{1,d} \| \mathbb{P}_{0,d}) = \mathbb{E}_{1,d} \left[\log(L_d) \right].$$

Then the following propositions are equivalent :

- (i) There exists a one-sided test for deciding $\mathbb{P}_{o,d}$ versus $\mathbb{P}_{1,d}$,
- (ii) $\lim_{d \to =\infty} \mathrm{KL}_d = +\infty$ and $\lambda s > 1$,
- (iii) with probability $1 p_{\text{ext}}(\lambda s) > 0$, L_d diverges to $+\infty$ with rate $\Omega\left(\exp\left(\Omega(1) \times (\lambda s)^d\right)\right)$.

Recall : estimator $\hat{\pi} : \mathcal{C} \to [n]$ is said to achieve

- Partial recovery if there exists some $\epsilon > 0$ such that $\mathbb{P}(\operatorname{ov}(\pi^*, \hat{\sigma}) > \epsilon) \xrightarrow[n \to \infty]{} 1$,
- One-sided partial recovery if it achieves partial recovery and $\mathbb{P}(\operatorname{err}(\pi^*, \hat{\sigma}) = o(1)) \xrightarrow[n \to \infty]{} 1.$

Theorem

For given (λ, \mathbf{s}) , if one-sided correlation detection is feasible, then one-sided partial alignment in the correlated Erdős-Rényi model $\mathcal{G}(\mathbf{n}, \lambda/\mathbf{n}, \mathbf{s})$ is achieved in polynomial time by our belief propagation algorithm.

Phase diagram

Sufficient conditions for the existence of one-sided test based on the Kullback-Leibler divergence or the number of automorphisms of GW trees.

Conjectured hard phase based on the impossibility of one-sided test because KL_d is bounded.

Conclusion

- Graph alignment is hard in general, we study its planted version.
- In a sparse regime, we establish a link between graph alignment and the correlation detection problem on trees.
- A belief-propagation algorithm can reach good performances, and seems to exhibit a hard phase for this problem.

Thank you!