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Question : What is the ’best way’ to match the nodes of two graphs G,H ?

Mathematically :
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The graph alignment problem

Question : What is the ’best way’ to match the nodes of two graphs G,H ?

Mathematically :
if |V(G)| = |V(H)|, find a bijection f : V(G)→ V(H) minimizing :∑

i,j∈V(G)

(
1(i,j)∈E(G) − 1(f (i),f (j))∈E(H)

)2
=: ]edge disagreements
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The graph alignment problem

Question : What is the ’best way’ to match the nodes of two graphs G,H ?

Mathematically :
Equivalently, if V(G) = V(H) = [n], solve

arg max
Π∈Sn

Tr

(
AGΠAHΠT

)
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Question : What is the ’best way’ to match the nodes of two graphs G,H ?

Mathematically :
Equivalently, if V(G) = V(H) = [n], solve

arg max
Π∈Sn

Tr

(
AGΠAHΠT

)
︸ ︷︷ ︸

NP-hard...
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Planted graph alignment



Planted graph alignment

Idea : Study the problem in the mean-case setting (on random instances),
planting a solution π∗ in the model, and try to recover it w.h.p.

Correlated Erdős-Rényi model

1. Two graphs G (blue) and G′ (red) with same node set [n], with edges
sampled independently as follows :

• with probability λs/n to get two-colored edges ;
• with probability λ(1− s)/n to get a blue monochromatic (resp. red

monochromatic) edge ;
• with remaining probability to get a non-edge,

2. Relabel the vertices of the red graph G′ with an uniform independent
permutation π∗ ∈ Sn. We observe G and H := G′ ◦ π∗.

(The marginals G, H are Erdős-Rényi random graphs with average degree λ).
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Planted graph alignment : Correlated Erdős-Rényi model
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Planted graph alignment : Correlated Erdős-Rényi model

Goal : estimate the latent vertex correspondence π∗, in a sparse regime
where the average degree λ and the correlation s ∈ [0, 1] are constant (not
scaling with n).

Remarks :

• The MAP estimator of π∗ is arg maxΠ〈AG ,ΠAHΠT〉...
• We can only hope for partial recovery (isolated nodes)...
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Measure of performance

For any subset C ⊂ [n], the performance of any one-to-one estimator
π̂ : C → [n]

ov(π∗, π̂) :=
1
n
∑
i∈C

1π̂(i)=π∗(i).

Note that the estimator π̂ only consists in a partial matching. The error
fraction of π̂ with the unknown permutation π∗ is defined as

err(π∗, π̂) :=
1
n
∑
i∈C

1π̂(i)6=π∗(i) =
|C|
n − ov(π∗, π̂).

A sequence of injective estimators {π̂n}n is said to achieve

• Partial recovery if there exists some α > 0 such that
P(ov(π∗, σ̂) > α) −→

n→∞
1,

• One-sided partial recovery if it achieves partial recovery and
P(err(π∗, σ̂) = o(1)) −→

n→∞
1.
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From graphs to trees

For i ∈ V(G),u ∈ V(H), look at the neighborhoods Ni and Nu at depth d :

• if u = π∗(i), (Ni,Nu) ' GW trees of o�spring Poi(λ), with intersection
of o�spring Poi(λs) (model P1,d) ;
• if u 6= π∗(i), (Ni,Nu) ' independent GW trees of o�spring Poi(λ)

(model P0,d).

Hypothesis testing : Can we test P1,d versus P0,d ?→ likelihood ratio

Ld(t, t′) :=
P1,d(t, t′)
P0,d(t, t′) .
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Computing the likelihood ratio

For two trees of depth d, the likelihood ratio Ld(t, t′) :=
P1,d(t,t′)
P0,d(t,t′) verifies

Ld(t, t′) =
c∧c′∑
k=0

ψ(k, c, c′)
∑

σ∈S(k,c)
σ′∈S(k,c′)

k∏
i=1

Ld−1(tσ(i), t′σ′(i)),

where c and c′ are the number of children of the roots,
ψ(k, c, c′) = eλs × sk s̄c+c

′−2k

λkk!
, and S(k, `) denotes the set of injective

mappings from [k] to [`].
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Results



Correlation detection in trees

One-sided tests : tests Td : Xd ×Xd → {0, 1} such that
P0,d(Td = 0) = 1− o(1) and lim infd P1,d(Td = 1) > 0 (i.e. vanishing type I
error and non vanishing power).

Theorem
Let

KLd := KL(P1,d‖P0,d) = E1,d [log(Ld)] .

Then the following propositions are equivalent :

(i) There exists a one-sided test for deciding P0,d versus P1,d,
(ii) lim

d→=∞
KLd = +∞ and λs > 1,

(iii) with probability 1 − pext(λs) > 0, Ld diverges to +∞ with rate
Ω
(

exp
(

Ω(1)× (λs)d
))
.
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Belief propagation for partial graph alignement

Recall : estimator π̂ : C → [n] is said to achieve

• Partial recovery if there exists some ε > 0 such that
P(ov(π∗, σ̂) > ε) −→

n→∞
1,

• One-sided partial recovery if it achieves partial recovery and
P(err(π∗, σ̂) = o(1)) −→

n→∞
1.

Theorem
For given (λ, s), if one-sided correlation detection is feasible, then one-sided
partial alignment in the correlated Erdős-Rényi model G(n, λ/n, s) is
achieved in polynomial time by our belief propagation algorithm.
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Phase diagram



Partial alignment in the regime with constant mean degree
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Partial alignment in the regime with constant mean degree
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Partial alignment in the regime with constant mean degree

Su�cient conditions for the existence of one-sided test based on the Kullback-Leibler
divergence or the number of automorphisms of GW trees.
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Partial alignment in the regime with constant mean degree

Conjectured hard phase based on the impossibility of one-sided test because KLd is
bounded.
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Conclusion



Conclusion

• Graph alignment is hard in general, we study its planted version.
• In a sparse regime, we establish a link between graph alignment and

the correlation detection problem on trees.
• A belief-propagation algorithm can reach good performances, and

seems to exhibit a hard phase for this problem.
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Thank you!
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