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ABSTRACT
Random graph alignment refers to recovering the underlying vertex correspondence between two random graphs
with correlated edges. This can be viewed as an average-case and noisy version of the well-known graph isomor-
phism problem. For the correlated Erdős-Rényi model, we prove an impossibility result for partial recovery in the
sparse regime, with constant average degree and correlation, as well as a general bound on the maximal reach-
able overlap. Our bound is tight in the noiseless case (the graph isomorphism problem) and we conjecture that
it is still tight with noise. Our proof technique relies on a careful application of the probabilistic method to build
automorphisms between tree components of a subcritical Erdős-Rényi graph.

PLANTED GRAPH ALIGNMENT: CORRELATED ERDŐS-RÉNYI MODEL

(1) Draw two graphs G,G′ with same node set [n], s.t.
for all (i, j) ∈

(
[n]
2

)
:(

1i∼
G
j ,1i∼

G′
j

)
=

 (1, 1) w.p. qs
(1, 0), (0, 1) w.p. q(1− s)
(0, 0) w.p. 1− q(2− s)

Sparse setting: constant mean degree with q =
λ/n, with correlation parameter s ∈ [0, 1].
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(2) Relabel the vertices of G′ with a uniform indepen-
dent permutation π∗: H := G′ ◦ π∗.
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Goal: given G,H, find an estimator π̂ that partially recovers π∗ w.h.p., that is s.t. ov(π̂, π∗) ≥ αn, for some α > 0,
where

ov(π̂(G,H), π∗) := 1

n!

∑
σ∈Sn

n∑
i=1

1π̂(Gσ,H)(i)=π∗◦σ−1(i),

MAIN RESULT

Theorem 1. For λ > 0 and s ∈ [0, 1], we have for any α > 0, for any estimator π̂:

P (ov(π̂, π∗) > (c(λs) + α)n) −→
n→∞

0,

where c(µ) is the greatest non-negative solution to the equation e−µx = 1− x.

Intuition: c(λs) → typical fraction of nodes that lie in the giant connected component of the intersection graph
(with the correct alignment) G ∧ G′. Outside this component, all other components in G ∧ G′ are small trees that
cannot be correcly aligned.

Corollary: Partial recovery is IT-infeasible if λs ≤ 1.

PROOF SKETCH: CORRUPTING THE GROUND TRUTH

Corruption procedure: In G ∧ G′, for all ’small’ tree
T, shuffle at random all copies of T→ blockwise con-
truction of a corrupted version σ of the ground truth s.t.
Gσ ∧ G′ ’looks like’ G ∧ G′.
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Theorem 2. Fix an integer p > 0. Consider (G,G′)
drawn under the correlated Erdős-Rényi model.
Then, with high probability, there exists {σi}i∈[p] –
that depend on the intersection graph G ∧ G′ – such
that

(i) ∀i ∈ [p], |E (Gσi ∧ G′)| = |E (G ∧ G′)|, (un-
noticed corruptions)

(ii) ∀i, j ∈ [p], i 6= j =⇒
∑n
`=1 1σi(`)=σj(`) ≤

c(λs)n+ o(n), where the o(n) is independent
of i, j ∈ [p]. (far apart corruptions)

Theorem 1 easily follows from Theorem 2.
Proof of Theorem 2: (ii)→ standard random permuta-
tion arguments. (i)→ Poisson approximation and prob-
abilistic method.
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Conjecture: λs = 1 is the sharp IT-threshold. Existence of hard phase is still open.
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