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AI-driven processes increasingly influence critical domains such as healthcare, finance, criminal
justice, and education. However, these systems often embed structural unfairness, either inherited
from biased data or induced by model design. Understanding and addressing such biases requires a
rigorous, model-driven and, consequently, statistical perspective.

A vast body of literature has tackled the issue of fairness in AI by formulating it as an optimization
problem under constraints, aiming to enforce statistical fairness criteria without explicitly modeling
unfairness itself. This approach has led to a rich and diverse set of methods, often focused on adjusting
model outputs to satisfy predefined fairness conditions. In contrast, our goal is to take a more fine-
grained, model-driven perspective by embedding unfairness within data-generating processes. We take
a model-driven approach, planting unfairness in data—e.g., in online settings with feedback—to better
understand, detect, and mitigate it.

This thesis focuses on three major themes:

1. Modeling biases present in the data, drawing inspiration from existing machine learning literature
and extending it to the fields of economics and econometrics;

2. Conducting a rigorous statistical analysis for detecting/estimating the unfairness, once the model
is established, including an investigation of the fundamental statistical limits of the problem;

3. Interactions of statistical modeling and sequential learning (such as linear bandits) is expected
to be investigated;

1 Bias in linear bandits

To give an idea of the type of modeling that we envision and that we want to investigate deeply, we
present a short overview of Gaucher et al. (2022). The are faced with the following problem: given a
two finite pools of candidates X1,X2 ⊂ Rd (e.g., males and females) at each time step t ≥ 1 the learner
picks xt ∈ X1 ∪ X2 and receives a biased feedback:

yt = ⟨xt, θ
∗⟩+ bst + ηt ,

where st = 1 if xt ∈ X1 and st = 2 otherwise. Here bs ∈ R is the systematic group-dependent bias
that is added to the feedback. The goal of the learner is to design a sequential strategy to minimize
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the regret

RT = max
x∈X1∪X2

T∑
t=1

⟨xt − x, θ∗⟩ .

The work of Gaucher et al. (2022) studies the impact of the biased feedback, when the true regret only
depends on the unbiased feedback and link the eventual rates to the geometry of the candidates.

Extending this model to a more complex bias in the feedback is one of the initial goals of the thesis,
which would allow the candidate to get familiar with the literature on fairness and linear bandits. The
first and rather natural extension is to consider

yt = ⟨xt, θ
∗ + θst⟩+ ηt .

That is, the bias is in the alignment of feature vectors and the evaluator. Note that in general this
problem is hopeless for example when θ1 = θ2 ̸= 0, but it becomes more feasible if θ1 = −θ2. The
first step is understanding when sub-linear regret is possible depending on the assumptions on θs. The
second step is about designing algorithms that achieve sub-linear regret and eventually optimal regret,
which would require understanding of fundamental limits of the problem.

2 In-feature unfairness

In contrast with the previous approach which considers a systematic bias in the decision-making
process, we can also envision a model where the bias lies within the training data. Here, there is no
explicit notion of groups, and the data are not necessarily isotropic, but the available observations are
biased. A typical model for the features Xt and the outcome Yt is:

Xt = AZt + Et, Yt = BZt +Wt

where Zt represents latent variables, which are thought to be fair, Et and Wt are independent noises.
This setting is related to the errors-in-variables problem. Matrix A represents the unfairness in the
feature design, for instance by placing too much weight on a particular coordinate or making certain
features invisible. The goal is to predict Yt given Xt, first say, in a non online setting. Doing so, we
also aim to propose an interpretable that somehow remove bias from feature, by getting back to the
original latent variables Zt. When A is invertible, we have

Yt = BA−1Xt −BA−1Et +Wt,

the noise may be structured under additional assumptions on A,B, which can help the learning pro-
cedure.

When these conditions are not met, designing an estimation procedure becomes an even more
interesting problem, requiring a more refined modeling of biases.

3 Planted counterfactuals

Another approach which we envision to model unfairness in online learning is counterfactual reasoning.
Counterfactual reasoning consists in providing answers to the following question: ‘all things being

equal, had this individual been a man instead of a woman, how would the output of the algorithm
have been modified?’. Counterfactual reasoning is notoriously difficult problem as it often requires
very strong assumptions on the data-generating process.

Let us give a high-level idea of a possible modelization of the problem. Assume that we have K
groups of candidates, X1, . . . ,Xk, which represent the sensitive classes for which we want to guarantee
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fairness in the decision process. At each time t ≥ 1, the learner selects a group kt ∈ [K] := {1, . . . ,K}
and a candidate xt ∈ Xkt , which yields an immediate reward of the form:

yt = fkt(xt) + εt ,

where εt represents the centered noise. Note that f1, . . . , fk are the different reward functions across
groups. In classical online learning, the focus is on maximizing cummulative reward

∑T
t=1 fkt(xt).

Thus, the goal is purely reward-driven and is based on the assumption (or belief) that the obtained
rewards are unbiased (or fair). Yet, in many real-world scenarios, this assumption does not hold.

Counterfactual regret Instead, we propose defining a notion of counterfactual reward and coun-
terfactual feature. We assume the existence of counterfactual mappings Ψk : Xt → X which we call
planted counterfactuals, and a counterfactual reward function f : X → R. Each function Ψk takes a
feature from group Xk and returns its counterpart in the counterfactual world X . The counterfactual
reward is then defined as

∑T
t=1 f(Ψkt(xt)).

The goal now is to maximize this reward instead. Morally, the mappings Ψk are precisely counter-
factual features of individuals in group Xk (e.g., Ψk maps women to men) that are already planted.
Meanwhile, the function f would correspond to the reward assuming that all the groups are counter-
factually mapped into the same space, thus eliminating the effect of between-group bias that.

Naturally, this goal is infeasible in the most general setting, so we need to make reasonable assump-
tions about both Ψk and f . Developing these assumptions and building the corresponding algorithms
lies at the core of this thesis.

Estimating the planted counterfactuals: a transport approach In order to address the prob-
lem of minimizing the counterfactual regret in previous section, a key step is to estimate the planted
counterfactuals Ψk, as well as f .

A general approach to model Ψk is to design a transport map between the features’ distribution
in Xk and some reasonable distribution in X (either postulated, known or estimated depending on
the problem). For instance, in the 1D case, when Xk,X ⊂ R, a natural transport map Ψk is a non-
decreasing mapping, thus preserving quantiles (or ranks) within Xk. In higher dimensions, however,
defining quantiles or ranks is more challenging, and different approaches have already been proposed
in the recent literature (see e.g. Hallin et al. (2021) and Ghosal and Sen (2022)).

The goal of this part is to investigate theoretical properties of various notions of high-dimensional
quantiles that, on one hand, have desirable statistical properties (e.g., enabling estimation without
the curse of dimensionality) and, on the other hand, are computationally efficient (e.g., computable in
polynomial time with respect to both sample size and dimension).

Regarding the estimation/computation of the transport map Ψk itself, we know that the cost of
such computation rapidly increases with the dimension. However, note that in the above model, the
only crucial map to estimate in order to minimize R̃T is f ◦Ψk, instead of Ψk. Hence making structural
assumptions on f can help in estimating f ◦Ψk accurately, escaping the curse of dimensionality.

To illustrate this, let us take the simple example where f is linear, that is, the reward yt writes
⟨β∗,Ψk(xt)⟩ + εt. In this case, the goal is to learn transport Ψk only in the direction of β∗, without
caring for the other orthogonal directions.

In line with this approach, some related concepts such as depths (Zuo and Serfling (2000)), Sliced
Wasserstein (Kolouri et al. (2019)) can also be useful for our tasks. Studying these approaches more in
depth and building new ones for our general problem will be one of the main directions of this thesis.
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4 Required profile

Candidates with a background in pure or applied mathematics/physics are encouraged to apply. Our
aim is to explore the intersection of three key areas: algorithmic fairness, online learning, and coun-
terfactual and causal reasoning. Ideally, applicants will have prior experience (such as a Master’s-level
course) in at least one of these areas. Due to the theoretical nature of the project, a strong foundation
in undergraduate mathematics and graduate-level statistics is a plus.

Acknowledgments The three-year thesis is funded by PEPR CAUSAL-IA1. The grant comes with-
out any obligatory teaching load. Interactions with other members of the consortium are to be ex-
pected.
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