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Chapter 1

Probabilistic tools for the statistician

Before delving into the core course in statistics, this first chapter introduces or recalls specific
tools from probability theory which will be useful for statistics. We assume that the reader
is already familiar with basic measure theory, random variables, convergence of random vari-
ables and classical convergence theorems (law of large numbers ans central limit theorem in
the multidimensional case). A general reminder on these can be found in Appendix B.

Throughout, we consider a fixed probability space (Ω,F ,P), that is a measurable space
(Ω,F) with measure P having total mass 1.

1.1. Basics on random vectors

1.1.1. Real random variables, random vectors, expectation and variance

Definition 1.1 (Random variable, random vector). A random variable1 is a measurable func-
tion from (Ω,F ,P) to (R,B(R)). A random vector of Rd is2 a measurable function from
(Ω,F ,P) to (Rd,B(Rd)). The law (or distribution) PX of a random vector X is defined for
all borelian set B ∈ B(R) by PX(B) := P(X ∈ B) = P(X−1(B)).

Remark 1.1. Note that since the projection on the k−th coordinate is continuous hence
measurable, if X = (X1, . . . , Xd) is a random vector in Rd, each of its coordinates are random
variables.

Definition 1.2 (Expectation, variance, covariance). Let X be a random variable. If X is
integrable, we define its expectation as

E[X] :=

∫
X(ω)dP(ω) =

∫
xPX(x) .

If moreover X2 is integrable (we say that X has finite second moment), the so is X, and we
define the variance of X as

Var(X) := E[X2]− E[X]2 = E[(X − E[X])2] .

Moreover, if X,Y are two random variables with finite second moment, their covariance is
defined by

Cov(X,Y ) := E[XY ]− E[X]E[Y ] = E[(X − E[X])(Y − E[Y ])] .

From the above definition, its is easily seen that the expectation is linear over the real
vector space of integrable random variables. The covariance is a bilinear operator on the real

1in this course, all random variables are real.
2in this course, all random vectors take their values in Rd.
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1.2. Operations on limits

vector space of random variables with finite second moment, and the variance is its associated
quadratic form. The variance is a positive quadratic form

Definition 1.3 (Expectation, covariance matrix of a random vector). Let X = (X1, . . . , Xd)
be a random vector in Rd. If X1, . . . , Xd are integrable, the expectation of X is defined as

E[X] = (E[X1], . . . ,E[Xd])
T ∈ Rd .

If moreover X1, . . . , Xd have finite second moments (we say that the vector X has finite
second moment), the covariance matrix of X is defined as We define the covariance matrix
of X by

Var(X) := E[(X − E[X])(X − E[X])T ] ∈ Rd×d,

that is, for all 1 ≤ i, j ≤ d, [Var(X)]i,j = E[(Xi − E[Xi])(Xj − E[Xj ])] = Cov(Xi, Xj). Thus,
Var(X) is a symmetric matrix. These definitions coincide with the usual expectation and
variance of a random variable when d = 1.

In their vectorial forms, the expectation and covariance operators inherit from their prop-
erties in dimension 1.

Proposition 1.1. Let X be a random vector in Rd with a finite second-order moment. Let
A ∈ Rm×d and b ∈ Rm. Then Y = AX + b is a random vector in Rm which also has a finite
second-order moment, and we have:

E[Y ] = AE[X] + b and Var(Y ) = AVar(X)AT .

Proof. Writing Y = (Y1, . . . , Yd), it is readily seen that for all 1 ≤ i ≤ d, Yi =
∑d

k=1Ai,kXk+

bi, and by linearity of expectation in dimension 1, E[Yi] is finite and E[Yi] =
∑d

k=1Ai,kE[Xk]+
bi = (AE[X] + b)i. The coordinates of Y are affine transformations of coordinates of X, so
they still all have finite second moment. A direct computation gives

Var(Y ) = E[(AX + b− (AE[X] + b))(AX + b− (AE[X] + b))T ]

= E[(AX −AE[X]))(AX −AE[X])T ]

= E[A(X − E[X]))(X − E[X])AT ]

= AVar(X)AT ,

using now linearity of (vectorial) expectation.

Remark 1.2. With the above property, we have that for all a ∈ Rd, aTΣa = Var(aTX) ≥ 0.
A covariance matrix is therefore always symmetric positive semidefinite.

For the interested reader, a reminder on Gaussian vectors can be found in Chapter C.

1.2. Operations on limits

In this section, we introduce basic tools to manipulates limits in distribution, which are
useful in many occasions in statistics.

1.2.1. Slutsky’s Lemma

Can we go from convergence in distribution of the marginals to that of the joint? Usually,
no, because the marginals do not determine the joint. But, if one of the coordinates converges
to a constant, then the limit joint has no choice: it must be the product distribution. This
is exactly the result stated by Slutsky’s Lemma.
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1.2. Operations on limits

Proposition 1.2 (Slutsky’s Lemma). Let (Xn)n≥1, (Yn)n≥1, X be random vectors such that

Xn
(d)−→

n→∞
X and Yn

(d)−→
n→∞

c where c is a constant. Then, (Xn, Yn)
(d)−→

n→∞
(X, c).

Remark 1.3. In particular, since convergence in distribution is stable by applying continuous

functions (see Remark B.10), we have Xn + Yn
(d)−→

n→∞
X + c, and when c ∈ R, XnYn

(d)−→
n→∞

cX.

Proof of Proposition 1.2. Assume Xn, X belong to Rd and Y belongs to Rm. Since con-
vergence in distribution is preserved by applying continous transformations, we can assume
c = 0m without loss of generality (replace Yn by Yn − c). We will use Lévy’s theorem,
hence establishing the simple convergence of Φ(Xn,Yn)(s, t) to Φ(X,0)(s, t) = ΦX(s), for all
(s, t) ∈ Rd × Rm. Let (s, t) ∈ Rd × Rm. We have

|Φ(Xn,Yn)(s, t)− Φ(X,0)(s, t)| ≤ |Φ(Xn,Yn)(s, t)− Φ(Xn,0)(s, t)|+ |Φ(Xn,0)(s, t)− Φ(X,0)(s, t)|
= |Φ(Xn,Yn)(s, t)− ΦXn(s)|+ |ΦXn(s)− ΦX(s)| .

The second term converges to 0 thanks to Lévy’s Theorem (Theorem B.3). For the first term,
note that

|Φ(Xn,Yn)(s, t)− ΦXn(s)| = |E[eisTXn+itTYn − eis
TXn ]| ≤ E[|eitTYn − 1|] .

Now, let ε > 0. Since y 7→ eit
T y is continous at y = 0m, there exists δ > 0 such that if

∥Yn∥ ≤ δ then |eitTYn − 1| ≤ ε. The previous bound becomes:

|Φ(Xn,Yn)(s, t)− ΦXn(s)| ≤ E[|eitTYn − 1|1∥Yn∥≤δ] + E[|eitTYn − 1|1∥Yn∥>δ]

≤ ε+ 2P(∥Yn∥ > δ) .

Since Yn
(d)−→

n→∞
0, ∥Yn∥

(d)−→
n→∞

0 in R, and ±δ is a continuity point of the c.d.f. of the r.v. 0

which is 1·≥0, we have by Theorem B.2:

P(∥Yn∥ > δ) −→
n→∞

1− 1δ>0 + 1−δ>0 = 0 .

Thus, for n large enough, the previous bound is less or equal to 2ε. This is true for all ε > 0,
and concludes the proof.

1.2.2. Delta method

Suppose that, for a sequence of random variables Xn and a sequence of constants vn, we
have the convergence in distribution

vn(Xn − a)
(d)−→

n→∞
X,

as in the classical central limit theorem. We are interested in the behavior of a transformed
quantity vn(g(Xn)− g(a)) when g is a sufficiently smooth function.

For example, if g is affine, i.e., g(x) = αx+ β, then it is immediate that

vn(g(Xn)− g(a)) = vn(αXn + β − αa− β) = αvn(Xn − a)
(d)−→

n→∞
αX.

For a more general (nonlinear) function g, the limiting distribution of vn(g(Xn) − g(a))
can be obtained using the derivative (or differential) of g at a. This is the essence of the
Delta method.
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1.3. Classical concentration inequalities

Proposition 1.3 (Delta method (multidimensional case)). Let (Xn)n≥1 be random vectors of
Rd and (vn)n≥1 a positive real sequence such that vn −→

n→∞
+∞. We assume that there exists

a ∈ Rd and a random vector X of Rd such that

vn(Xn − a)
(d)−→

n→∞
X .

Let g : Rd → Rm be differentiable at point a. Then,

vn(g(Xn)− g(a))
(d)−→

n→∞
dga(X) .

Remark 1.4. In dimensions d = m = 1, this translates to vn(g(Xn)− g(a))
(d)−→

n→∞
g′(a)X .

Proof of Proposition 1.3. First off, note that since vn(Xn − a)
(d)−→

n→∞
X, we have

Xn = a+ vn(Xn − a)× 1

vn

(d)−→
n→∞

a+X × 0 = a,

by Slutsky’s Lemma. Now, since g is differentiable at point a, we can write a Taylor expansion
of g(x) at x = a:

g(x) = g(a) + dga(x− a) + ∥x− a∥ε(x),

where dga denotes the differential of g at point a, ε is continuous from Rd \ {a} to Rm, and

ε(x) −→
x→a

0. We can then extend ε by continuity to a. Since Xn
(d)−→

n→∞
a in distribution, then

by continuity, ε(Xn)
(d)−→

n→∞
ε(a) = 0. Thus, we have for all n,

g(Xn)− g(a) = dga(Xn − a) + ∥Xn − a∥ε(Xn) .

We get,

vn(g(Xn)− g(a)) = vndga(Xn − a) + vn∥Xn − a∥ε(Xn)

= dga(vn(Xn − a)) + ∥vn(Xn − a)∥ε(Xn)

(d)−→
n→∞

dga(X) .

The last convergence follows from the fact that dga is linear thus continous, and ∥vn(Xn −
a)∥ε(Xn)

(d)−→
n→∞

∥X∥ × 0 = 0 by Slutsky’s Lemma. Then, the sum of the two terms converges
to dga(X) again by Slutsky’s Lemma.

1.3. Classical concentration inequalities

Concentration inequalities are a useful tool for statistics since they will help us prove
convergence in probability, high probability guarantees, or derive asymptotic confidence in-
tervals.

1.3.1. Markov’s and (Bienaymé-)Chebyshev’s inequalities

We start with basics.

Proposition 1.4 (Markov’s inequality). Let X be a non-negative random variable and p ≥ 1

10



1.3. Classical concentration inequalities

such that E[Xp] <∞. Then, for all x > 0,

P(X ≥ x) ≤ E[Xp]

xp
.

Proof. It simply consists in writing Xp = Xp1X≥x+X
p1X<x and take the expectation (finite

by assumption), which gives E[Xp] ≥ xpP(X ≥ x) + 0, and the desired result.

By applying Markov’s inequality to X−E[X] with p = 2, one gets Bienaymé-Chebyshev’s
inequality:

Proposition 1.5 (Bienaymé-Chebyshev’s inequality). Let X be a random variable with finite
variance (and mean). Then, for all t > 0,

P(|X − E[X]| ≥ t) ≤ Var(X)

t2
.

Example 1.1. If Sn ∼ Bin(n, p), then Sn/n
a.s.−→

n→∞
E[Sn/n] = p by the law of large numbers.

To establish a first concentration inequality, we can apply Bienaymé-Chebyshev’s inequality
(B-C hereafter) to Sn/n: its variance is p(1−p)

n , and thus for all ε > 0,

P(|Sn/n− p| ≥ ε) ≤ p(1− p)

ε2n
≤ 1

4ε2n
.

This result is informative but not strong enough to recover almost sure convergence, since the
harmonic series diverges. Next, we can somehow improve this concentration with Hoeffding’s
inequality.

1.3.2. Hoeffding’s inequality

Proposition 1.6 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables
such that for all 1 ≤ i ≤ n, ai ≤ Xi ≤ bi almost surely. Let Sn = X1 + . . .+Xn. Then, for
all t > 0

P(Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
and

P(|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
Proof of Proposition 1.6. Let us start with a Lemma.

Lemma 1.1. If X ∈ [a, b] a.s., then for all s ∈ R, E[exp(s(X − E[X]))] ≤ exp( s
2(b−a)2

8 ).

With the previous Lemma, for all t, s > 0,

P(Sn − E[Sn] ≥ t) = P(exp(s(Sn − E[Sn])) ≥ exp(st))

≤ exp(−st)E[exp(s(Sn − E[Sn]))] ≤ exp(−st)
n∏

i=1

E[exp(s(Xi − E[Xi]))]

≤ exp(−st)
n∏

i=1

exp

(
s2(bi − ai)

2

8

)
= exp

(
−st+ s2

8

n∑
i=1

(bi − ai)
2

)
,

which is minimal for s = 4t∑n
i=1(bi−ai)2

, and gives the desired result. For the symmetric result,
consider the −Xi, and apply Hoeffding’s inequality to −bi ≤ −Xi ≤ −ai.
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1.3. Classical concentration inequalities

Proof of Lemma 1.1. Wlog we asusme that E[X] = 0 so that a ≤ 0 ≤ b. Then, by convexity
of x 7→ esx for all s ∈ R, we have for all x ∈ [a, b], esx ≤ b−x

b−ae
sa+ x−a

b−a e
sb. Taking expectations

yields

E[esX ] ≤ b

b− a
esa +

−a
b− a

esb

the last term is esa(1− p+ pes(b−a)), with p = − a
b−a ∈ [0, 1]. For u = s(b− a), the log of the

last term is equal to ψ(u) := −pu + ln(1 − p + peu). We see that ψ(0) = 0, ψ′(0) = 0 and
ψ′′(u) = (1−p)peu

(1−p+peu)2
= αβ

(α+β)2
≤ 1

4 by the AM–GM inequality. Taylor’s formula implies that

for all u > 0, there exists v ∈ [0, u] such that ψ(u) = ψ(0) + uψ′(0) + u2

2 ψ
′′(v) ≤ u2

8 .

Example 1.2. We continue our previous example, where Sn ∼ Bin(n, p). Now, we can apply
Hoeffding’s inequality with ai = 0 and bi = 1. This gives that for all ε > 0,

P(|Sn/n− p| ≥ ε) = P(|Sn − np| ≥ εn) ≤ 2 exp(−2ε2n) .

This result is much more powerful than B-C for a constant deviation ε. In particular, it is
strong enough to recover almost sure convergence by Borel-Cantelli’s Lemma.

1.3.3. Bernstein’s inequality

In Hoeffding’s inequality, the almost sure boundedness of the random variables (Xi) is
used to obtain upper bounds on the Laplace transform s 7→ E[esXi ] that do not depend on
the variance of Xi. In this sense, the bound corresponds to a worst–case scenario. When
additional information on the variances of the Xi’s is available, one can obtain sharper con-
centration results. A fundamental example of such an improvement is provided by Bernstein’s
inequality.

Proposition 1.7 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables
such that for all 1 ≤ i ≤ n, |Xi − E[Xi]| ≤ M almost surely. Let Sn = X1 + . . . + Xn and
denote Vn =

∑n
i=1Var(Xi). Then, for all t > 0,

P(Sn − E[Sn] ≥ t) ≤ exp

(
− t2

2(Vn +Mt/3)

)
,

and

P(|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
− t2

2(Vn +Mt/3)

)
.

Proof of Proposition 1.7.

Lemma 1.2. Suppose that |X| ≤ c almost surely and E[X] = 0. For any t > 0,

E
[
etX
]
≤ exp

(
t2σ2

(
etc − 1− tc

(tc)2

))
,

where σ2 = Var(X).

Proof. Expand the exponential in series and write

E
[
etX
]
= 1 + 0 +

∞∑
r=2

tr E[Xr]

r!
= 1 + t2σ2F ≤ exp

(
t2σ2F

)
,

where F :=
∑∞

r=2
tr−2 E[Xr]

r!σ2 . For r ≥ 2, we have, using |X| ≤ c, E[Xr] = E[Xr−2X2] ≤

12
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c r−2σ2, and therefore

F ≤
∞∑
r=2

tr−2cr−2

r!
=

1

(tc)2

∞∑
r=2

trcr

r!
=
etc − tc− 1

(tc)2
.

Now, back the proof of Bernstein’s inequality, assume wlog that E[Xi] = 0 for all 1 ≤ i ≤
n. With the previous Lemma, for any t, s > 0,

P(Sn − E[Sn] ≥ t) = P(Sn ≥ t) = P(esSn ≥ est) ≤ e−stE[esSn ]

≤ e−st exp

(
n∑

i=1

s2Var(Xi)

(
esc − 1− sc

(sc)2

))
= exp

(
−st+ esc − 1− sc

c2
Vn

)
By taking the derivative, the previous right hand side is minimal when s = 1

c log(1 + tc/Vn),
and for this value of s, we get

exp

(
−st+ esc − 1− sc

c2
Vn

)
= −Vn

c2
h(tc/Vn),

with h : u 7→ (1 + u) log(1 + u)− u. The proof is concluded by checking that, for all u ≥ 0,
h(u) ≥ u2

2+2u/3 . For the symmetric result, consider again applying the one-side concentration
bound to the −Xi.

Example 1.3. We continue our previous example where Sn ∼ Bin(n, p). Here, each Xi ∈
{0, 1}, so M = 1 and Var(Xi) = p(1− p). Then

Vn =
n∑

i=1

Var(Xi) = np(1− p).

Applying Bernstein’s inequality, for all ε > 0,

P(|Sn/n− p| ≥ ε) = P(|Sn − np| ≥ nε) ≤ 2 exp

(
− nε2

2(p(1− p) + ε/3)

)
.

Notice that compared with Hoeffding’s bound 2 exp(−2ε2n), Bernstein’s bound can be
much tighter when ε ≤ p ≪ 1, because it uses the actual variance, p(1− p), rather than the
maximal possible range, which is 1/4.

1.3.4. Chernoff method

The fundamental assumption in Hoeffding’s inequality is that the variabels are bounded.
We can howefer obtain exponential concentration bounds in more generality, when ’merely’
assuming that X has finite exponential moments, that is E[eλX ] < ∞ for all λ > 0. In this
case, for all c ∈ R and all λ > 0, Markov’s inequality yields

P(X ≥ c) = P(exp(λX) ≥ exp(λc)) ≤ exp(−λc)E[eλX ] =: ϕ(λ)

and we conclude by minimising ϕ (or equivalently log ϕ), if we know how to do it. This
simple yet powerful trick is called the Chernoff method and is at the heart of a myriad of
concentration inequalities (including Hoeffding’s and Bernstein’s, as seen before).

13
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1.4. Conditional distributions, conditional expectation

This part is largely inspired from [4], Section 6.
Consider X a random vector in Rd, and Y a random vector in Rm, defined on the same

probability space (Ω,F ,P). The fundamental motivation for conditional distributions is the
following. If X is observed and we learn that X = x, then the law of Y can be modified (or,
updated) taking account of the new information given by the observation X = x.

1.4.1. Discrete case

When X is discrete, this update can be done by the standard formula for conditional
probabilities. The set of possible values of X is X0 :=

{
x ∈ Rd, P(X = x) > 0

}
. Define for

all x ∈ X0, all Borel sets B ∈ B(Rm),

Qx(B) := P(Y ∈ B |X = x) =
P(Y ∈ B,X = x)

P(X = x)
. (1.1)

For all x ∈ X0, Qx is a probability measure on Rm called the conditional distribution for Y
given X = x.

1.4.2. General case

Now, these conditional distributions should also exist more generally, in particular when
X is a continuous random variable. However, defining them is not as direct as in the discrete
case, since this would imply conditioning to a null probability event in (1.1) (P(X = x) = 0
is x is not an atom of the law of X). We give heareafter the formal definition.

Definition 1.4 (Conditional distribution). A function Q : Rd×B(Rm) → [0, 1] is a conditional
distribution of Y given X if

(i) for all x ∈ Rd, Qx(·) := Q(x, ·) is a probability measure on (Rm,B(Rm)),

(ii) for all B ∈ B(Rm), x 7→ Qx(B) is measurable,

(iii) for all3 measurable all f : Rd×Rm → R such that E[|f(X,Y )|] <∞, then for all x ∈ Rd,
y 7→ f(x, y) is Qx−integrable, for all y ∈ Rm, x 7→

∫
f(x, y)dQx(y) is PX−integrable,

and
E[f(X,Y )] =

∫∫
f(x, y)dQx(y)dPX(x) .

In particular, for all A ∈ B(Rd), B ∈ B(Rm),

P(X ∈ A, Y ∈ B) =

∫
A
Qx(B)dPX(x) .

Remark 1.5. For all B ∈ B(Rm), Qx(B) is unique PX−almost everywhere by point (iii)
hereabove. Note however that the null sets depend on B, hence we cannot conclude directly
that there exists a global null-measure set N such that Qx(B) is unique for all B ∈ B, x ∈
Rd \ N . In our setting, this technical issue is solved since B(Rm) is countably generated4.
Throughout, we will, by abuse of terminology, refer to Q as the conditional distribution for
Y given X.

In our setting, X, Y are random vectors and it can proven that such conditional distribu-
tion always exist (see [1], Theorem 33.3). This definition is non constructive, but conditional
distributions can be obtained easily when X and Y have a joint density with respect to a
product measure µ× ν, see next Section.

3note that we need (ii) to define properly the integral in (iii)
4every open set in Rm is a countable union of balls with rational radii and center in Qm.
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1.4. Conditional distributions, conditional expectation

Remark 1.6. If X and Y are independent, then Qx(·) = P(Y ∈ ·) is the conditional distribu-
tion for Y given X, that is, Y |X ∼ Y .

When we have a conditional distribution, we can define conditional expectations as follows.

Definition 1.5 (Conditional expectation). Let Q be the conditional distribution for Y given
X. For all f : Rd × Rm → R such that E[|f(X,Y )|] < ∞, the conditional expectation of
f(X,Y ) given X = x, denoted E[f(X,Y ) |X = x], is defined by

E[f(X,Y ) |X = x] :=

∫
f(x, y)dQx(y) .

Note that this quantity is well-defined by point (iii) of Definition 1.4. The conditional
expectation of f(X,Y ) given X, denoted E[f(X,Y ) |X], is the random variable E ◦X, where
E : x 7→ E[f(X,Y ) |X = x].

Remark 1.7. Note that by the above definition, the conditional expectation is positive and
linear.

Remark 1.8. Note that by Remark 1.6, if X and Y are independent, then for all integrable
f , E[f(X,Y ) |X = x] = f(x, Y ). In particular, if X and Y are independent, E[Y |X] = Y .

A fundamental result in statistics is the following:

Proposition 1.8 (Law of total expectation). For all f : Rd×Rm → R such that E[|f(X,Y )|] <
∞, we have

E[f(X,Y )] = E[E[f(X,Y ) |X]] .

This is a consequence of point (iii) in the definition.

Definition 1.6 (Conditional variance). Let Q be a conditional distribution for Y given X. For
all f : Rd × Rm → R such that E[f2(X,Y )] < ∞, the conditional variance of f(X,Y ) given
X = x, denoted Var(f(X,Y ) |X = x), is defined by

Var(f(X,Y ) |X = x) = E
[
f2(X,Y )|X = x

]
− E [f(X,Y )|X = x]2 .

We define the conditional variance of f(X,Y ) given X by Var(f(X,Y ) |X) = E
[
f2(X,Y )|X

]
−

E [f(X,Y )|X]2.

Proposition 1.9 (Law of total variance). For all f : Rd×Rm → R such that E[f2(X,Y )] <∞,
we have

Var(f(X,Y )) = E[Var(f(X,Y ) |X)] + Var(E[f(X,Y ) |X]) .

Proof.

Var(f(X,Y ))−E[Var(f(X,Y ) |X)] =

E[f2(X,Y )]− E[E[f2(X,Y )|X]] + E[E[f(X,Y )|X]2]− E[f(X,Y )]2

= 0 + E[E[f(X,Y )|X]2]− E[E[f(X,Y )|X]]2

= Var(E[f(X,Y ) |X]) .

1.4.3. Case where X,Y have a joint density

Let Z = (X,Y ), which a random vector in Rd+m. Assume that the law of Z has a density
p(X,Y ) with respect to µ× ν, where µ and ν are non-negative σ−finite measures on Rd and

15
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Rm. This density p(X,Y ) is called the joint density of X and Y , and for all C ∈ B(Rd × Rm)

(= B(Rd)⊗ B(Rm)),

P(Z ∈ C) =

∫∫
1C(x, y)p(X,Y )(x, y)dµ(x)dν(y) .

By Fubini’s theorem, the order of integration can be inversed, hence for all A ∈ B(Rd),

P(X ∈ A) = P(Z ∈ A× Rm) =

∫∫
1A(x)p(X,Y )(x, y)dµ(x)dν(y)

=

∫
A

(∫
p(X,Y )(x, y)dν(y)

)
dµ(x) .

This shows that X has a density pX : x 7→
∫
p(X,Y )(x, y)dν(y) with respect to µ. This

density is called the marginal density of X. Similarly, Y has marginal density pY : y 7→∫
p(X,Y )(x, y)dµ(x) w.r.t. ν.

Now, in our setting, there is a simple way to obtain conditional distributions, themselves
with density.

Proposition 1.10. Suppose X and Y have a joint density with respect to a product measure
µ × ν. Let pX be the marginal density of X and let E =

{
x ∈ Rd, pX(x) > 0

}
. For x ∈ E,

define

pY |X(y |x) =
p(X,Y )(x, y)

pX(x)
,

and Qx the probability measure with density y 7→ pY |X(y |x) w.r.t. ν. When x /∈ E, take
pY |X(y |x) = p0, where p0 is a fixed density of an arbitrary probability distribution P0, and
let Qx = P0. Then Q : X × B(Rm) → [0, 1] is a conditional distibution for Y given X.

Proof. Qx is always a probability measure since for all x ∈ E,∫
pY |X(y |x)dν(y) = 1

pX(x)

∫
p(X,Y )(x, y)dν(y) = 1 .

Point (ii) follows from measurablity of the density p(X,Y ). To show (iii) we will even show
that for all f : Rd × Rm → R such that E[|f(X,Y )|] <∞, then

E[f(X,Y )] =

∫∫
f(x, y)dQx(y)dPX(x) .

Note that up to changing p(X,Y )(x, y) to p(X,Y )(x, y)1E(x) (these two densities agree almost
everywhere since P(X ∈ E) = 0), we can assume that p(X,Y )(x, y) = 0 if x /∈ E. Then, for
such an f ,

E[f(X,Y )] =

∫∫
f(x, y)p(X,Y )(x, y)dν(y)dµ(x)

=

∫∫
f(x, y)pY |X(y |x)dν(y)pX(x)dµ(x)

=

∫∫
f(x, y)dQx(y)dPX(x) .

Applying this to proper indicator functions gives (iii).

Example 1.4. Consider µ the counting measure on {0, . . . , k} and ν the Lebesgue measure on
R. Define

p(X,Y )(x, y) =

(
k

x

)
yx(1− y)k−x1x∈{0,...,k},y∈]0,1[ .
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1.4. Conditional distributions, conditional expectation

Let us see what happens in this model. First, one draws a uniform variable Y in [0, 1], then
conditionally on Y = y we draw X ∼ Bin(k, y). Intuitively, it appears that the marginal
distribution of X is a uniform distribution on {0, . . . , k}. Let us prove this. X has marginal
density

pX(x) =

∫ 1

0

(
k

x

)
yx(1− y)k−xdy =

1

k + 1
,

for all x ∈ {0, . . . , k}. We used the result∫ 1

0
uα−1(1− u)β−1 =

Γ(α)Γ(β)

Γ(α+ β)
.

This is, as one can expect, the uniform distribution on {0, . . . , k}. It is easy to check that
the marginal density of Y is constant to 1.

Now, because pY (y) = 1, pX|Y (x | y) =
(
k
x

)
yx(1 − y)k−x, a binomial distribution, hence

we denote X |Y = y ∼ Bin(k, y).
Similarly,

pY |X(y |x) = (k + 1)

(
k

x

)
yx(1− y)k−x

=
Γ(k + 2)

Γ(x+ 1)Γ(k − x+ 1)
yx+1−1(1− y)k−x+1−1,

which the Beta distribution, and so Y |X = x ∼ Beta(x+ 1, k − x+ 1).
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