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The Graph Alignment problem

Question: Given two graphs G = (V, E) and G′ = (V′, E′) with |V| = |V′|, what
is the best way to match nodes of G with nodes of G′?

Minimizing disagreements: Find a bijection f : V → V′ that minimizes∑
(i,j)∈V2

(
1(i,j)∈E − 1(f (i),f(j))∈E′

)2
,

or, equivalently solve
max

Π
Tr
(

GΠG′Π>
)
,

where Π runs over all permutation matrices. ←− NP-hard in the worst case
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Planted Graph Alignment

Correlated Erdős-Rényi model G(n,q, s):

• Draw two graphs G,G′ with same node set [n], s.t. for all (i, j) ∈
(

[n]
2
)
:(

1i∼
G

j, 1i∼
G′

j

)
=


(1, 1) w.p. qs two−coloured edge
(0, 1), (1,0) w.p. q(1− s) red or blue edge
(0,0) w.p. 1− q(2− s) non-edge

Sparse setting: q = λ/n←− constant mean degree

s ∈ [0, 1] is the correlation parameter1

2

3

4

5

6

7

8

9
10

11
1

2

3

4

5

6

7

8

9
10

11

1

2

3

4

5

6

7

8

9
10

11

1

2

3

4

5

6

7

8

9
10

11

1

2

106

7

11

8

9

4

5
3

1

2



Planted Graph Alignment

Correlated Erdős-Rényi model G(n,q, s):

• Draw two graphs G,G′ with same node set [n], s.t. for all (i, j) ∈
(

[n]
2
)
:(

1i∼
G

j, 1i∼
G′

j

)
=


(1, 1) w.p. qs two−coloured edge
(0, 1), (1,0) w.p. q(1− s) red or blue edge
(0,0) w.p. 1− q(2− s) non-edge

Sparse setting: q = λ/n←− constant mean degree

s ∈ [0, 1] is the correlation parameter

1

2

3

4

5

6

7

8

9
10

11
1

2

3

4

5

6

7

8

9
10

11

1

2

3

4

5

6

7

8

9
10

11

1

2

3

4

5

6

7

8

9
10

11

1

2

106

7

11

8

9

4

5
3

1

2



Planted Graph Alignment

Correlated Erdős-Rényi model G(n,q, s):

• Draw two graphs G,G′ with same node set [n], s.t. for all (i, j) ∈
(

[n]
2
)
:(

1i∼
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j, 1i∼
G′

j

)
=


(1, 1) w.p. qs two−coloured edge
(0, 1), (1,0) w.p. q(1− s) red or blue edge
(0,0) w.p. 1− q(2− s) non-edge

Sparse setting: q = λ/n←− constant mean degree

s ∈ [0, 1] is the correlation parameter

• Relabel the vertices of G′ with a uniform independent permutation π∗:
H := G′ ◦ π∗.
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Planted Graph Alignment: state-of-the art

Goal: upon observing G and H, recover π∗ with high probability.

Sparse regime, even with s = 1, Θ(n) isolated vertices←− only partial
alignment may be reachable [Cullina-Kiyavash ’16].

Notion of performance: for any Sn-valued estimator π̂(G,H), define its
overlap with the planted permutation π∗

ov(π̂(G,H), π∗) :=
1
n!

∑
σ∈Sn

n∑
i=1

1π̂(Gσ,H)(i)=π∗◦σ−1(i),

Questions: can we hope for ov(π̂, π∗) > αn w.h.p. (no computational
restrictions)? What is the maximal fraction α?

State-of-the art: in the sparse case where λ > 0 and s ∈ [0, 1] are fixed
constants: partial recovery is IT-feasible if λs > 4 + ε [Wu-Xu-Yu ’21].
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Main result: maximal reachable overlap

Theorem 1
For λ > 0 and s ∈ [0, 1], we have for any α > 0, for any estimator π̂:

P (ov(π̂, π∗) > (c(λs) + α)n) −→
n→∞

0,

where c(µ) is the greatest non-negative solution to the equation
e−µx = 1− x.

Corollary: Partial recovery is IT-infeasible if λs ≤ 1.
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Intuition: exchanging small tree components

1. Information contained in the intersection graph G ∧ G′:
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In our model G ∧ G′ is an Erdős-Rényi graph: G ∧ G′ ∼ G(n, λs/n).

2. [Erdős, Rényi, Bollobás] typical fraction c(λs) of nodes in the giant
component of G ∧ G′ → the remaining (1− c(λs))n nodes are almost all
on small tree components.

3. For any small tree T, a large number of copies of T will appear in G ∧ G′.
Reshu�e them in G → a lot of unnoticed corrupted candidates for π̂
that are far from π∗.
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Intuition: exchanging small tree components

Let T := {T1, . . . , TM} be the set of all trees (up to isomorphism) of size less
than K := K(n) = blog nc.

Algorithm 1: Recursive construction of σ

Initialize σ0 ← id;
for i = 1 to M do

Consider T = Ti and draw uniformly at random the tree permutation
ΣT ∈ SXT , independently from the past;

Consider σT the node permutation associated with ΣT;
σi ← σT ◦ σi−1;

end
return σ = σM
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Intuition: exchanging small tree components
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Intuition (2/2)

4. Joint distribution for G,G′:

P(G = G,G′ = G′) =
1

Zλ,s(G)Zλ,s(G′)

[
s(n− λ(2− s))

λ(1− s)2

]|E(G∧G′)|

Theorem 2
Fix an integer p > 0. Consider (G,G′) drawn under the correlated
Erdős-Rényi model. Then, with high probability, there exists {σi}i∈[p] –
that depend on the intersection graph G ∧ G′ – such that

(i) ∀i ∈ [p], |E (Gσi ∧ G′)| = |E (G ∧ G′)|,
(ii) ∀i, j ∈ [p], i 6= j =⇒

∑n
`=1 1σi(`)=σj(`) ≤ c(λs)n + o(n), where the

o(n) is independent of i, j ∈ [p].
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Proof sketch for Theorem 2

• Point (ii) (all permutations are far apart): lower bound for XT, number
of components isomorphic to T in G ∧ G′ holding uniformly w.h.p. +
standard random permutation arguments.

• Point (i) (same number of double edges): Define S : {u, v} ∈ S if edge
{u, v} is not double. Control of the number of extra double edges:

∆(σ) :=
∑
{u,v}∈S

1u←→v1σ(u)←→σ(v).
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Proof sketch for Theorem 2

• Point (ii) (all permutations are far apart): lower bound for XT, number
of components isomorphic to T in G ∧ G′ holding uniformly w.h.p. +
standard random permutation arguments.

• Point (i) (same number of double edges): Define S : {u, v} ∈ S if edge
{u, v} is not double. Control of the number of extra double edges:

∆(σ) :=
∑
{u,v}∈S

1u←→v1σ(u)←→σ(v).

Conditionally to the two-coloured edges and to σ, ∆(σ) is asymptotically
Poisson with parameter

(1− c(λs)n)2

2 × λ2(1− s)2

n2 =
λ2(1− s)2(1− c(λs))2

2 .

−→ probabilistic method.
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Conclusion: diagram for partial recovery
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Thank you!
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