Impossibility of Partial Recovery in the Graph Alignment Problem

Luca Ganassali, Marc Lelarge and Laurent Massoulié 34th Annual Conference on Learning Theory, July 2021

INRIA, DI/ENS, PSL Research University, Paris, France

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

Minimizing disagreements: Find a bijection $f: V \rightarrow V'$ that minimizes

$$\sum_{(i,j)\in V^2} \left(\mathbf{1}_{(i,j)\in E} - \mathbf{1}_{(f(i),f(j))\in E'} \right)^2,$$

or, equivalently solve

$$\max_{\Pi} \operatorname{Tr} \left(\mathsf{G} \Pi \mathsf{G}' \Pi^\top \right),$$

where Π runs over all permutation matrices.

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

Minimizing disagreements: Find a bijection $f: V \rightarrow V'$ that minimizes

$$\sum_{(i,j)\in V^2} \left(\mathbf{1}_{(i,j)\in E} - \mathbf{1}_{(f(i),f(j))\in E'}\right)^2,$$

or, equivalently solve

$$\max_{\Pi} \operatorname{Tr} \left(\mathsf{G} \Pi \mathsf{G}' \Pi^{\top} \right),$$

where Π runs over all permutation matrices. \leftarrow NP-hard in the worst case

Planted Graph Alignment

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

• Draw two graphs $\mathcal{G}, \mathcal{G}'$ with same node set [n], s.t. for all $(i, j) \in {[n] \choose 2}$:

$$\begin{pmatrix} \mathbf{1}_{i_{\widetilde{G}}^{j}}, \mathbf{1}_{i_{\widetilde{G}'}^{j}} \end{pmatrix} = \begin{cases} (1, 1) & \text{w.p. } qs & two-coloured edge \\ (0, 1), (1, 0) & \text{w.p. } q(1 - s) & red \text{ or } blue edge \\ (0, 0) & \text{w.p. } 1 - q(2 - s) & \text{non-edge} \end{cases}$$

Sparse setting: $q = \lambda/n \leftarrow constant$ mean degree

 $s \in \left[0,1\right]$ is the correlation parameter

Planted Graph Alignment

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

• Draw two graphs $\mathcal{G}, \mathcal{G}'$ with same node set [n], s.t. for all $(i, j) \in {[n] \choose 2}$:

$$\begin{pmatrix} \mathbf{1}_{i_{\widetilde{G}}^{j}}, \mathbf{1}_{i_{\widetilde{G}^{j}}} \end{pmatrix} = \begin{cases} (1, 1) & \text{w.p. } qs & two-coloured edge \\ (0, 1), (1, 0) & \text{w.p. } q(1-s) & red \text{ or } blue edge \\ (0, 0) & \text{w.p. } 1 - q(2-s) & \text{non-edge} \end{cases}$$

Sparse setting: $q = \lambda/n \leftarrow constant$ mean degree

 $s \in \left[0,1\right]$ is the correlation parameter

Planted Graph Alignment

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

• Draw two graphs $\mathcal{G}, \mathcal{G}'$ with same node set [n], s.t. for all $(i, j) \in {[n] \choose 2}$:

$$\begin{pmatrix} \mathbf{1}_{i_{\widetilde{G}}^{j}}, \mathbf{1}_{i_{\widetilde{G}^{j}}} \end{pmatrix} = \begin{cases} (1, 1) & \text{w.p. } qs & two-coloured edge \\ (0, 1), (1, 0) & \text{w.p. } q(1 - s) & red \text{ or } blue edge \\ (0, 0) & \text{w.p. } 1 - q(2 - s) & \text{non-edge} \end{cases}$$

Sparse setting: $q = \lambda/n \leftarrow constant$ mean degree

- $s \in \left[0,1\right]$ is the correlation parameter
- Relabel the vertices of \mathcal{G}' with a uniform independent permutation π^* : $\mathcal{H} := \mathcal{G}' \circ \pi^*$.

Goal: upon observing $\mathcal G$ and $\mathcal H$, recover π^* with high probability.

Goal: upon observing \mathcal{G} and \mathcal{H} , recover π^* with high probability.

Sparse regime, even with s = 1, $\Theta(n)$ isolated vertices \leftarrow only partial alignment may be reachable [Cullina-Kiyavash '16].

Goal: upon observing \mathcal{G} and \mathcal{H} , recover π^* with high probability.

Sparse regime, even with s = 1, $\Theta(n)$ isolated vertices \leftarrow only partial alignment may be reachable [Cullina-Kiyavash '16].

Notion of performance: for any S_n -valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its overlap with the planted permutation π^*

$$\operatorname{ov}(\hat{\pi}(\mathcal{G},\mathcal{H}),\pi^*) := \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n \mathbf{1}_{\hat{\pi}(\mathcal{G}^{\sigma},\mathcal{H})(i) = \pi^* \circ \sigma^{-1}(i)},$$

Goal: upon observing \mathcal{G} and \mathcal{H} , recover π^* with high probability.

Sparse regime, even with s = 1, $\Theta(n)$ isolated vertices \leftarrow only partial alignment may be reachable [Cullina-Kiyavash '16].

Notion of performance: for any S_n -valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its overlap with the planted permutation π^*

$$\operatorname{ov}(\hat{\pi}(\mathcal{G},\mathcal{H}),\pi^*) := \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n \mathbf{1}_{\hat{\pi}(\mathcal{G}^{\sigma},\mathcal{H})(i) = \pi^* \circ \sigma^{-1}(i)},$$

Questions: can we hope for $ov(\hat{\pi}, \pi^*) > \alpha n$ w.h.p. (no computational restrictions)? What is the maximal fraction α ?

State-of-the art: in the sparse case where $\lambda > 0$ and $s \in [0, 1]$ are fixed constants: partial recovery is IT-feasible if $\lambda s > 4 + \varepsilon$ [Wu-Xu-Yu '21].

Theorem 1 For $\lambda > 0$ and $s \in [0, 1]$, we have for any $\alpha > 0$, for any estimator $\hat{\pi}$: $\mathbb{P}(\operatorname{ov}(\hat{\pi}, \pi^*) > (c(\lambda s) + \alpha)n) \xrightarrow[n \to \infty]{} 0$, where $c(\mu)$ is the greatest non-negative solution to the equation $e^{-\mu x} = 1 - x$. **Theorem 1** For $\lambda > 0$ and $s \in [0, 1]$, we have for any $\alpha > 0$, for any estimator $\hat{\pi}$: $\mathbb{P}\left(\operatorname{ov}(\hat{\pi}, \pi^*) > (c(\lambda s) + \alpha)n\right) \xrightarrow[n \to \infty]{} 0,$ where $c(\mu)$ is the greatest non-negative solution to the equation $e^{-\mu x} = 1 - x.$

Corollary: Partial recovery is IT-infeasible if $\lambda s \leq 1$.

1. Information contained in the intersection graph $\mathcal{G}\wedge\mathcal{G}'$:

In our model $\mathcal{G} \wedge \mathcal{G}'$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}' \sim G(n, \lambda s/n)$.

1. Information contained in the **intersection graph** $\mathcal{G} \wedge \mathcal{G}'$:

In our model $\mathcal{G} \wedge \mathcal{G}'$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}' \sim G(n, \lambda s/n)$.

2. [Erdős, Rényi, Bollobás] typical fraction $c(\lambda s)$ of nodes in the giant component of $\mathcal{G} \wedge \mathcal{G}' \rightarrow$ the remaining $(1 - c(\lambda s))n$ nodes are almost all on **small tree components**.

1. Information contained in the **intersection graph** $\mathcal{G} \wedge \mathcal{G}'$:

In our model $\mathcal{G} \wedge \mathcal{G}'$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}' \sim G(n, \lambda s/n)$.

- 2. [Erdős, Rényi, Bollobás] typical fraction $c(\lambda s)$ of nodes in the giant component of $\mathcal{G} \wedge \mathcal{G}' \rightarrow$ the remaining $(1 c(\lambda s))n$ nodes are almost all on **small tree components**.
- 3. For any small tree **T**, a large number of copies of **T** will appear in $\mathcal{G} \wedge \mathcal{G}'$. **Reshuffle them in** $\mathcal{G} \rightarrow$ a lot of unnoticed corrupted candidates for $\hat{\pi}$ that are far from π^* .

Let $\mathbb{T} := {\mathbf{T}_1, \dots, \mathbf{T}_M}$ be the set of all trees (up to isomorphism) of size less than $K := K(n) = \lfloor \log n \rfloor$.

Algorithm 1: Recursive construction of σ

```
Initialize \sigma_0 \leftarrow id;

for i = 1 to M do

Consider \mathbf{T} = \mathbf{T}_i and draw uniformly at random the tree permutation

\Sigma_{\mathbf{T}} \in \mathcal{S}_{X_{\mathbf{T}}}, independently from the past;

Consider \sigma_{\mathbf{T}} the node permutation associated with \Sigma_{\mathbf{T}};

\sigma_i \leftarrow \sigma_{\mathbf{T}} \circ \sigma_{i-1};

end
```

return $\sigma = \sigma_M$

 $\sigma_{\mathbf{T}_1} = (8)(5\ 11\ 21\ 22\ 13)$

 $\Sigma_{T_2} = (2)(1\ 3)$

$$\sigma_{\mathbf{T}_2} = (6)(7)(9\ 14)(10\ 20)$$

 $\Sigma_{\mathbf{T}_3} = (1\ 2)$ $\sigma_{\mathbf{T}_3} = (15\ 18)(19\ 17)(12\ 16)$

 $\Sigma_{\mathbf{T}_4} = (1)$ $\sigma_{\mathbf{T}_4} = (1)(2)(3)(4)$

4. Joint distribution for $\mathcal{G}, \mathcal{G}'$:

$$\mathbb{P}(\mathcal{G} = G, \mathcal{G}' = G') = \frac{1}{\mathcal{Z}_{\lambda,s}(G)\mathcal{Z}_{\lambda,s}(G')} \left[\frac{s(n-\lambda(2-s))}{\lambda(1-s)^2}\right]^{|\mathcal{E}(G \wedge G')|}$$

4. Joint distribution for $\mathcal{G}, \mathcal{G}'$:

$$\mathbb{P}(\mathcal{G} = G, \mathcal{G}' = G') = \frac{1}{\mathcal{Z}_{\lambda,s}(G)\mathcal{Z}_{\lambda,s}(G')} \left[\frac{s(n-\lambda(2-s))}{\lambda(1-s)^2}\right]^{|E(G \wedge G')|}$$

Theorem 2

Fix an integer p > 0. Consider $(\mathcal{G}, \mathcal{G}')$ drawn under the correlated Erdős-Rényi model. Then, with high probability, there exists $\{\sigma_i\}_{i \in [p]}$ – that depend on the intersection graph $\mathcal{G} \land \mathcal{G}'$ – such that

(i)
$$\forall i \in [p], |E(\mathcal{G}^{\sigma_i} \wedge \mathcal{G}')| = |E(\mathcal{G} \wedge \mathcal{G}')|,$$

(ii) $\forall i, j \in [p], i \neq j \implies \sum_{\ell=1}^{n} \mathbf{1}_{\sigma_i(\ell) = \sigma_j(\ell)} \leq c(\lambda s)n + o(n)$, where the o(n) is independent of $i, j \in [p]$.

Proof sketch for Theorem 2

- Point (*ii*) (all permutations are far apart): lower bound for X_T , number of components isomorphic to T in $\mathcal{G} \wedge \mathcal{G}'$ holding uniformly w.h.p. + standard random permutation arguments.
- Point (*i*) (same number of double edges): Define $S: \{u, v\} \in S$ if edge $\{u, v\}$ is not double. Control of the *number of extra double edges*:

$$\Delta(\sigma) := \sum_{\{u,v\}\in\mathcal{S}} \mathbf{1}_{u\longleftrightarrow v} \mathbf{1}_{\sigma(u)\longleftrightarrow \sigma(v)}.$$

Proof sketch for Theorem 2

- Point (*ii*) (all permutations are far apart): lower bound for X_T , number of components isomorphic to T in $\mathcal{G} \wedge \mathcal{G}'$ holding uniformly w.h.p. + standard random permutation arguments.
- Point (*i*) (same number of double edges): Define $S: \{u, v\} \in S$ if edge $\{u, v\}$ is not double. Control of the *number of extra double edges*:

$$\Delta(\sigma) := \sum_{\{u,v\} \in \mathcal{S}} \mathbf{1}_{u \longleftrightarrow v} \mathbf{1}_{\sigma(u) \longleftrightarrow \sigma(v)}.$$

Conditionally to the two-coloured edges and to σ , $\Delta(\sigma)$ is asymptotically *Poisson* with parameter

$$\frac{(1-c(\lambda s)n)^2}{2} \times \frac{\lambda^2(1-s)^2}{n^2} = \frac{\lambda^2(1-s)^2(1-c(\lambda s))^2}{2}$$

 \longrightarrow probabilistic method.

Conclusion: diagram for partial recovery

Conclusion: diagram for partial recovery

Conjecture: $\lambda s = 1$ is the sharp threshold.

Thank you!