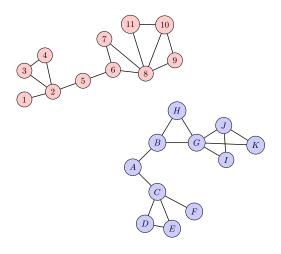
From tree matching to sparse graph alignment.

Luca Ganassali and Laurent Massoulié

INRIA, Paris

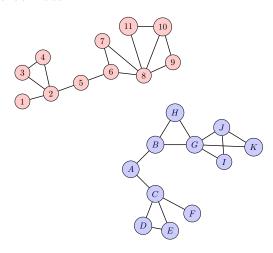
Dyogene Seminar, June 25, 2020

Introduction: the graph isomorphism problem



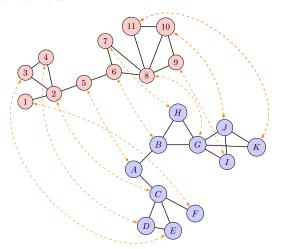
Introduction: the graph isomorphism problem

Question: Given two graphs G = (V, E) and G' = (V', E'), is there a graph isomorphism, i.e. a bijection $f : V \to V'$ such that $(i,j) \in E \iff (f(i),f(j)) \in E'$?

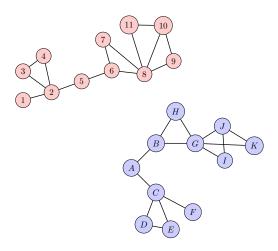


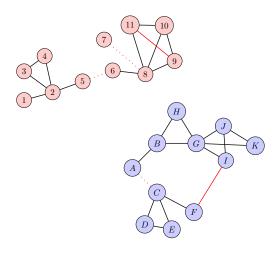
Introduction: the graph isomorphism problem

Question: Given two graphs G = (V, E) and G' = (V', E'), is there a graph isomorphism, i.e. a bijection $f : V \to V'$ such that $(i,j) \in E \iff (f(i),f(j)) \in E'$?

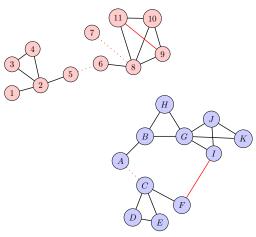


Problem in NP, thought to be neither in P nor NP-complete.





Relaxed version: Is there a bijection $f: V \to V'$ that *preserves most edges*?



• De-anonimization of networks.

- De-anonimization of networks.
- \bullet Align protein interaction networks for cells of species \to infer function of proteins in biology of species A from knowledge of protein function in biology of species B

- De-anonimization of networks.
- \bullet Align protein interaction networks for cells of species \to infer function of proteins in biology of species A from knowledge of protein function in biology of species B
- Align graphs between words in languages A and B to construct dictionary between the two languages

- De-anonimization of networks.
- ullet Align protein interaction networks for cells of species o infer function of proteins in biology of species A from knowledge of protein function in biology of species B
- Align graphs between words in languages A and B to construct dictionary between the two languages
- ...

Formally: *f* minimizes

$$\sum_{i=1}^n \left(\mathbf{1}_{(i,j)\in E} - \mathbf{1}_{(f(i),f(j))\in E'}\right).$$

Formally: f minimizes

$$\sum_{i=1}^{n} \left(\mathbf{1}_{(i,j)\in E} - \mathbf{1}_{(f(i),f(j))\in E'} \right).$$

 \longrightarrow instance of the NP-hard quadratic assignment problem (QAP):

$$\max_{\Pi} \operatorname{Tr} \left(G \Pi G' \Pi^{\top} \right),$$

where Π runs over all permutation matrices.

Erdős-Rényi random graph $\mathcal{G}(n,p)$: n vertices, each edge present with probability p, independently from other edges.

Erdős-Rényi random graph $\mathcal{G}(n,p)$: n vertices, each edge present with probability p, independently from other edges.

Correlated Erdős-Rényi random graphs $\mathcal{G}(n,p,s)$, with planted permutation:

Erdős-Rényi random graph $\mathcal{G}(n,p)$: n vertices, each edge present with probability p, independently from other edges.

Correlated Erdős-Rényi random graphs $\mathcal{G}(n,p,s)$, with planted permutation:

• Start with a 'parent graph' $G_0 \sim \mathcal{G}(n, p/s)$,

Erdős-Rényi random graph $\mathcal{G}(n,p)$: n vertices, each edge present with probability p, independently from other edges.

Correlated Erdős-Rényi random graphs $\mathcal{G}(n,p,s)$, with planted permutation:

- Start with a 'parent graph' $G_0 \sim \mathcal{G}(n, p/s)$,
- Form G_1 as a s—sub-sampling of G_0 : independently, keep each edge with probability s.

Erdős-Rényi random graph $\mathcal{G}(n,p)$: n vertices, each edge present with probability p, independently from other edges.

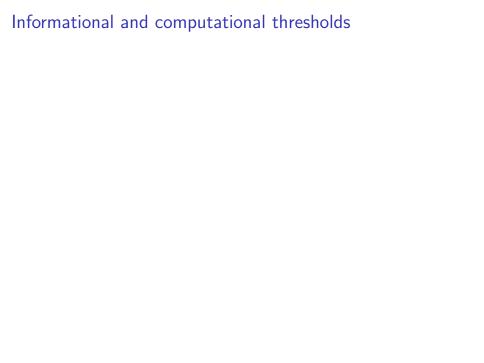
Correlated Erdős-Rényi random graphs $\mathcal{G}(n,p,s)$, with planted permutation:

- Start with a 'parent graph' $G_0 \sim \mathcal{G}(n, p/s)$,
- Form G_1 as a s—sub-sampling of G_0 : independently, keep each edge with probability s.
- Form G'_2 as an other independent s—sub-sampling of G_0 .

Erdős-Rényi random graph $\mathcal{G}(n,p)$: n vertices, each edge present with probability p, independently from other edges.

Correlated Erdős-Rényi random graphs $\mathcal{G}(n, p, s)$, with planted permutation:

- Start with a 'parent graph' $G_0 \sim \mathcal{G}(n, p/s)$,
- Form G_1 as a s—sub-sampling of G_0 : independently, keep each edge with probability s.
- Form G'_2 as an other independent s—sub-sampling of G_0 .
- Shuffle labels of G_2' uniformly at random to form G_2 . Formally, $G_2 = \Pi^\top G_2' \Pi$, where $\Pi = \Pi_\sigma$ is the matrix of a uniform permutation σ .



Informational and computational thresholds

Exact recovery of σ :

- Information-theoretically feasible iff $nps = \log n + \omega(1)$ [Cullina-Kiyavash'16].
- Polynomial time feasible if $np \ge (\log n)^{\alpha}$ and $1 s \le (\log n)^{-\beta}$ [Ding et al.'18].
- Exact recovery requires at least a mean degree of order log n.

Informational and computational thresholds

Exact recovery of σ :

- Information-theoretically feasible iff $nps = \log n + \omega(1)$ [Cullina-Kiyavash'16].
- Polynomial time feasible if $np \ge (\log n)^{\alpha}$ and $1 s \le (\log n)^{-\beta}$ [Ding et al.'18].
- Exact recovery requires at least a mean degree of order log n.

This work: partial recovery of σ

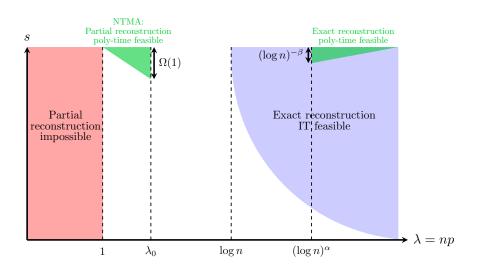
- Polynomial-time recovery, in sparse regime np = O(1).
- Relaxed objective: find a one-to-one $\hat{\sigma}$ from G_1, G_2 , such that

$$\operatorname{overlap}(\hat{\sigma}) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\hat{\sigma}(i) = \sigma(i)} = \Omega(1),$$

and

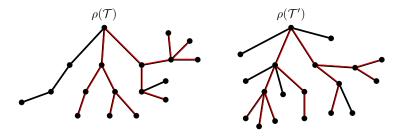
$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{\hat{\sigma}(i)\neq\sigma(i)}=o(1).$$

Informational and computational thresholds

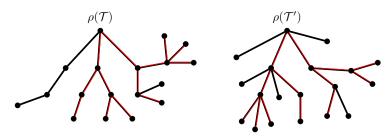


Given two rooted trees $\mathcal{T}, \mathcal{T}'$, their **matching weight at depth** d $\mathcal{W}_d(\mathcal{T}, \mathcal{T}')$ is the largest number of leaves at depth d of a common rooted sub-tree \mathcal{T}'' .

Given two rooted trees $\mathcal{T}, \mathcal{T}'$, their **matching weight at depth** d $\mathcal{W}_d(\mathcal{T}, \mathcal{T}')$ is the largest number of leaves at depth d of a common rooted sub-tree \mathcal{T}'' .



Given two rooted trees $\mathcal{T}, \mathcal{T}'$, their **matching weight at depth** d $\mathcal{W}_d(\mathcal{T}, \mathcal{T}')$ is the largest number of leaves at depth d of a common rooted sub-tree \mathcal{T}'' .



Recursive computation:

$$\mathcal{W}_d(\mathcal{T},\mathcal{T}') = \sup_{\mathfrak{m}} \sum_{(i,u) \in \mathfrak{m}} \mathcal{W}_{d-1}(\mathcal{T}_{i \leftarrow \rho(\mathcal{T})}, \mathcal{T}'_{u \leftarrow \rho(\mathcal{T}')}).$$

$$(G_1,G_2)\sim \mathcal{G}(n,p=\lambda/n,s)$$
 with planted permutation σ .

$$(G_1, G_2) \sim \mathcal{G}(n, p = \lambda/n, s)$$
 with planted permutation σ .

• if $u = \sigma(i)$, the neighborhoods \mathcal{N}_i of i in G_1 and \mathcal{N}_u in $G_2 \simeq \mathsf{GW}$ trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$. Thus

 $\mathcal{W}_d(\mathcal{N}_i,\mathcal{N}_u) \geq \sharp$ leaves at depth d in the intersection $\simeq (\lambda s)^d$

$$(G_1, G_2) \sim \mathcal{G}(n, p = \lambda/n, s)$$
 with planted permutation σ .

• if $u = \sigma(i)$, the neighborhoods \mathcal{N}_i of i in G_1 and \mathcal{N}_u in $G_2 \simeq \mathsf{GW}$ trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$. Thus

$$\mathcal{W}_d(\mathcal{N}_i,\mathcal{N}_u) \geq \sharp$$
leaves at depth d in the intersection $\simeq (\lambda s)^d$

• if $u \neq \sigma(i)$, $(\mathcal{N}_i, \mathcal{N}_u) \simeq$ independent GW trees of offspring $\mathcal{P}(\lambda)$.

$$(G_1, G_2) \sim \mathcal{G}(n, p = \lambda/n, s)$$
 with planted permutation σ .

• if $u = \sigma(i)$, the neighborhoods \mathcal{N}_i of i in G_1 and \mathcal{N}_u in $G_2 \simeq \mathsf{GW}$ trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$. Thus

$$\mathcal{W}_d(\mathcal{N}_i,\mathcal{N}_u) \geq \sharp$$
leaves at depth d in the intersection $\simeq (\lambda s)^d$

• if $u \neq \sigma(i)$, $(\mathcal{N}_i, \mathcal{N}_u) \simeq$ independent GW trees of offspring $\mathcal{P}(\lambda)$.

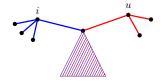
Theorem

For $\lambda \in (1, \lambda_0]$ and $s \in (s^*(\lambda), 1]$, then there exists $\gamma < \lambda s$ such that

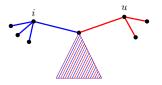
$$\mathcal{W}_d(\mathcal{T}, \mathcal{T}') \ll \gamma^d$$
 as $d \to \infty$.

Compare $\mathcal{W}_d(\mathcal{N}_i, \mathcal{N}_u)$ to $(\lambda s)^d$?

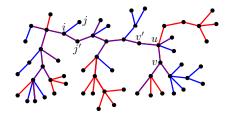
Compare $W_d(\mathcal{N}_i, \mathcal{N}_u)$ to $(\lambda s)^d$? NO!



Compare $W_d(\mathcal{N}_i, \mathcal{N}_u)$ to $(\lambda s)^d$? NO!



'Dangling trees trick': look at both $\mathcal{W}_{d-1}(j \leftarrow i, v \leftarrow u)$ and $\mathcal{W}_{d-1}(j' \leftarrow i, v' \leftarrow u)$.



Neighborhood tree matching algorithm, main result

NTMA algorithm: $S = \emptyset$. For all pairs $(i, u) \in V(G_1) \times V(G_2)$ whose d-neighborhoods \mathcal{N}_i and \mathcal{N}_u are trees:

If there exists $j \neq j' \stackrel{G_1}{\sim} i$, $v \neq v' \stackrel{G_2}{\sim} u$ such that $\mathcal{W}_{d-1}(j \leftarrow i, v \leftarrow u) > \tau$ and $\mathcal{W}_{d-1}(j' \leftarrow i, v' \leftarrow u) > \tau$, then add (i, u) to \mathcal{S} .

Neighborhood tree matching algorithm, main result

NTMA algorithm: $S = \emptyset$. For all pairs $(i, u) \in V(G_1) \times V(G_2)$ whose d-neighborhoods \mathcal{N}_i and \mathcal{N}_u are trees:

If there exists $j \neq j' \stackrel{G_1}{\sim} i$, $v \neq v' \stackrel{G_2}{\sim} u$ such that $\mathcal{W}_{d-1}(j \leftarrow i, v \leftarrow u) > \tau$ and $\mathcal{W}_{d-1}(j' \leftarrow i, v' \leftarrow u) > \tau$, then add (i, u) to \mathcal{S} .

Theorem

Assume $\lambda s > 1$, $\lambda \in (1, \lambda_0]$ and $s \in (s^*(\lambda), 1]$. Then for $d = \Theta(\log n)$ and $\tau = \Theta(\gamma^{d-1})$, with high probability:

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{(i,\sigma(i))\in\mathcal{S}}=\Omega(1)\quad \text{and}\quad \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{\exists u\neq\sigma(i),(i,u)\in\mathcal{S}}=o(1).$$

In practice...

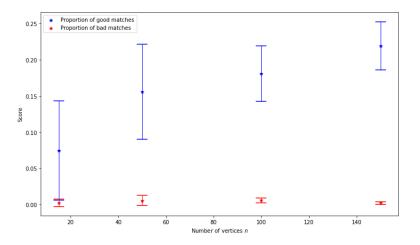


Figure: Mean score of NTMA-2 for $\lambda=2.1$, d=5, and s=1 (isomorphism case).

In practice...

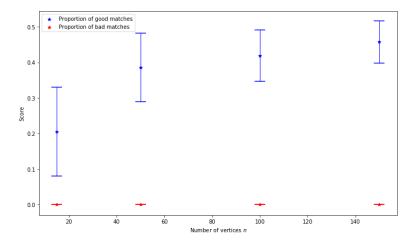


Figure: Mean score of NTMA-2 for $\lambda=2.1$, d=5, and s=0.95.

In practice...

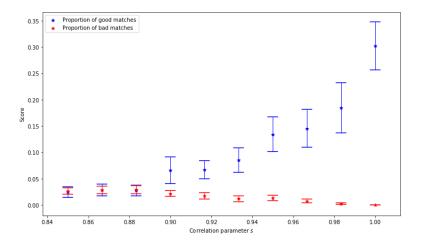


Figure: Mean score of NTMA-2 for n=150, $\lambda=1.4$, d=5, and varying s.

Take-home messages

 Graph alignment, important unsupervised learning problem with many applications.

Take-home messages

- Graph alignment, important unsupervised learning problem with many applications.
- NTMA: first method proven to succeed at partial alignment in relevant regime of sparse graphs.

Take-home messages

- Graph alignment, important unsupervised learning problem with many applications.
- NTMA: first method proven to succeed at partial alignment in relevant regime of sparse graphs.
- Outlook: boundaries of phases in (λ, s) diagram, in particular IT-feasibility and poly-time feasibility of partial alignment, and correlation detection in trees.

Thank you!