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Introduction: graph alignment
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Two graphs: G1 = (V1,E1) (left) and G2 = (V2,E2) with |V1| = |V2|.
Informal question: can we find a bijective mapping Π : V1 → V2 such
that:

G2 ∼ ΠG1ΠT .
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Planted permutation in the correlated Erdős-Rényi model

ERC(n, p, s) model with planted permutation:
Generate two aligned graphs G1,G ′2 with V = [n], and for all i , j ∈ V ,
independently,

P
(
i ∼

G1
j , i ∼

G ′
2

j
)

= ps,

P
(
i ∼

G1
j , i �

G ′
2

j
)

= P
(
i �

G1
j , i ∼

G ′
2

j
)

= p(1− s),

P
(
i �

G1
j , i �

G ′
2

j
)

= 1− p(2− s).

Chose uniformly a random permutation (matrix) Π in Sn and define
G2 = ΠG ′2ΠT .
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Questions

Consider two models:
Under P (planted model), (G1,G2) ∼ ERC(n, p, s).
Under Q (null model), G1,G2 are two independent ER(n, p) graphs.

Detection: test P vs Q.

’Partial’ (Quasi-exact) reconstruction: Under P, find an estimator Π̂
such that ]

{
i , Π̂(i) = Π(i)

}
= n − o(n) with high probability.

Exact reconstruction: Under P, find an estimator Π̂ such that Π̂ = Π
with high probability.
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IT-threshold for exact reconstruction

We have the following:

Theorem (Cullina, Kiyavash, ’18)
(i) Under some mild sparsity constraints (p log2 n→ 0 and s ≥ p log2 n),

if
nps − (2) log n→∞,

then there exists an estimator Π̂ that achieves exact reconstruction
with high probability.

(ii) If
s > p and nps − log n→ −∞,

then any estimator Π̂ verifies Π̂ = Π with probability o(1).
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Some notations

For π ∈ Sn, define its lifted version `(π) (bijection on the set of pairs of
vertices):

`(π) :
([n]

2
)
→

([n]
2
)

{i , j} 7→ {π(i), π(j)}

For any graph G and σ bijection of
(V (G)

2
)
, define G ◦ σ the ’relabeled

graph’: it has vertex set V (G) and

∀e ∈
(
V (G)
2

)
, e ∈ E (G ◦ σ) ⇐⇒ σ(e) ∈ E (G).

With these notations we observe G1,G2 = G ′2 ◦ `(Π−1) in the ERC model.
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Some notations

p :=
(
p00 p01
p10 p11

)
:=
(
1− p(2− s) p(1− s)
p(1− s) ps

)
.

Note that
Cov

(
1e∈G11e∈G ′

2

)
= det p > 0 ⇐⇒ s > p.

More generally we will assume positive correlation:
p00p11
p01p10

> 1.

For any matrix m ∈M2(R), we use the notation

pm = pm00
00 pm01

01 pm10
10 pm11

11 .
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Some notations

For any graphs g1 (blue), g2 (red), define

µ(g1, g2) :=
(
] {uncolored edges} ] {red edges}
] {blue edges} ] {blue and red edges}

)

so that P(G1 = g1,G ′2 = g2) = pµ(g1,g2) .

∆(g1, g2) := ] {simple-colored edges} = µ(g1, g2)01 + µ(g1, g2)10.

For π ∈ Sn,

δ(π, g1, g2) := 1
2 (∆(g1, g2 ◦ `(π))−∆(g1, g2)) .

δ(π, g1, g2) ≤ 0 ⇐⇒ π is a better alignment than id for g1, g2.
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Some notations

Lemma

∀π ∈ Sn, µ(g1, g2 ◦ `(π))− µ(g1, g2) = δ(π, g1, g2)
(
−1 1
1 −1

)

Proof M : µ(g1, g2 ◦ `(π))− µ(g1, g2). Edge conservation implies

M
(
1
1

)
=
(
0
0

)
,

(
1
1

)T

M =
(
0
0

)T

.

So M = λ

(
−1 1
1 −1

)
, and

2λ = M01 + M10 = ∆(g1, g2 ◦ l(π))−∆(g1, g2).
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Bayesian background

Bayesian inference tells us that the best estimator is the
maximum a posteriori (MAP):

Π̂MAP ∈ arg max
π

P
(
Π = π

∣∣G1,G2
)
.

In our case:

P
(
Π = π

∣∣G1 = g1,G2 = g2
)
∝ P (Π = π,G1 = g1,G2 = g2)
∝ P

(
G1 = g1,G ′2 = g2 ◦ `(π)

)
= pµ(g1,g2◦`(π))

∝
(p10p01
p00p11

)δ(π,g1,g2)
∝
(p10p01
p00p11

) 1
2 ∆(π,g1,g2)

.

So

Π̂MAP = arg min
π

∆(G1,G2 ◦ `(π)) = arg min
π
‖G1 − πTG2π‖2 .
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Useful bounds

Changing the variable π = π ◦ ΠT , to decide feasibility, a crucial set is

Q :=
{
π ∈ Sn, δ(π,G1,G ′2) ≤ 0

}
.

P
(

Π̂MAP 6= Π
)
≤
∑
π 6=id P (π ∈ Q) (Achievability case)

P
(

Π̂MAP = Π
)
≤ E

[
1id∈arg minπ ∆(π,G1,G ′

2)/|Q|
]
(Non-feasible case)
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Proof for non-feasible case

If nps − log n→ −∞, we can show that

Q :=
{
π ∈ Sn, δ(π,G1,G ′2) ≤ 0

}
is ’too large’:

Theorem (Automorphisms of Erdős-Rényi graphs (Bollobas ’85))

Let G ∼ ER(n, p). If p ≤ log n−cn
n with cn →∞, then there exists some

sequence w(n)→∞ such that

P (|Aut(G)| ≤ w(n)) ≤ 1
w(n) .

(Proof: |Aut(G)| ≥ X !, where X is the number of isolated vertices, then
second moment method).

Since Aut (G1 ∩ G ′2) ⊂ Q,

P
(

Π̂MAP = Π
)
≤ E [1/|Q|] ≤ 2/w(n)→ 0.
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Proof sketch in the achievability case

Fix π 6= id, and bound P (δ(π,G1,G ′2) ≤ 0). We note

S :=
{
e ∈

(
n
2

)
, `(π)(e) 6= e

}

Lemma

E
[
δ(π,G1,G ′2)

]
= |S|(p00p11 − p01p01) = |S| det p > 0.

Proof:

E
[
δ(π,G1,G ′2)

]
=
∑

e

(
P
(
e ∈ G1, e ∈ G ′2

)
− P

(
e ∈ G1, `(π)(e) ∈ G ′2

))
=
∑
e∈S

(p11 − (p10 + p11)(p01 + p11))

= |S|(p00p11 − p01p01).
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Proof sketch in the achievability case

We now need a ’large-deviation principle’ for δ, measured in terms of |S|:

Lemma (Cullina, Kiyavash, ’18)

P
(
δ(π,G1,G ′2) ≤ 0

)
≤ exp (−z |S|) ,

where
z = (√p00p11 −

√p01p10)2

(Proof: difficult, based on analysis of the generating function of (δ, µ).)

Note: if p log2 n→ 0 and s ≥ p log2 n, then

z ∼ p11 = ps.
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Proof sketch in the achievability case
A more natural quantity is

s := ] {1 ≤ i ≤ n, π(i) 6= i} .

We have (
n − s
2

)
≤
(
n
2

)
− |S| ≤

(
n − s
2

)
+ s

2 ,

and in particular,

|S| ≥ s(n − 2)
2 .

Then,

P
(

Π̂MAP 6= Π
)
≤

n∑
t=1

∑
π|s=t

P
(
δ(π,G1,G ′2) ≤ 0

)
≤

n∑
t=1

nt exp (−zt(n − 2)/2)

.
n∑

t=1
exp (−pst(n − 2)/2 + t log n) ≤ O (exp (−psn/2 + log n)) .
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Another setting: weighted graph (or matrix) alignment
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Two complete graphs G1,G2 with correlated weights.
Informal question: can we find a bijective mapping Π : V1 → V2 such
that:

G2 ∼ ΠG1ΠT .
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Standard GOE model

Our new planted model P:

Ai ,j = Aj,i ∼


1√
nN (0, 1) if i 6= j ,
√

2√
nN (0, 1) if i = j ,

and H is an independent copy of A. Draw a uniform permutation matrix Π
of size n × n, and B = ΠT

(√
1− σ2A + σH

)
Π, where σ = σ(N) is the

noise parameter.

Question: What is the IT-threshold for exact recovery?
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IT threshold for weighted graph alignment

In this case:

P
(
Π = π

∣∣A = a,B = b
)
∝ P

(
Π = π,A = a,H = 1

σ

(
πbπT −

√
1− σ2A

))

∝ exp
(
−nTr(a2)

4

)
exp

−nTr
((
πbπT −

√
1− σ2a

)2
)

4


So

Π̂MAP = arg min
π

Tr
((
πBπT −

√
1− σ2A

)2
)

︸ ︷︷ ︸
=:C(π,A,H)

.
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IT threshold for weighted graph alignment

Make the variable change τ = πΠT and define:

δ(τ,A,B) = C(π,A,B)− C(Π,A,B).

We have

δ(τ,A,B)

= (1− σ2) Tr
(

(τAτT − A)2
)

︸ ︷︷ ︸
=:Q(A)τ

−2σ
√
1− σ2 Tr

(
τHτT (τAτT − A)

)
︸ ︷︷ ︸
=:L(A,H)τ

(d)
=N(0, 1

n Q(A)τ)
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IT threshold for weighted graph alignment

Defining as before

s := ] {1 ≤ i ≤ n, π(i) 6= i} ,

further analysis shows that Q(A)τ = P (δ(τ,A,B) ≤ 0) is of order
Θ(1)× s.

P (δ(τ,A,B) ≤ 0)

= P
(

(1− σ2)N
(
1, 4σ2

nsΘ(1)(1− σ2)

)
≤ 0

)
≤ exp

(
−C 1− σ2

σ2 ns
)
.

So we need to compare C 1−σ2

σ2 n to log n, i.e. σ to 1
(1+ log n

n )1/2 ∼ 1− log n
2n .
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IT threshold for weighted graph alignment

Theorem (Work in progress...)
There exist 0 < c < C such that:
(i) If

1− σ ≥ C log n
n ,

then there exists an estimator Π̂ that achieves exact reconstruction
with high probability.

(ii) If
1− σ ≤ c log n

n ,

then any estimator Π̂ verifies Π̂ = Π with probability o(1).
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Thank you!
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